1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2006 by Magnus Lundin *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex-R4 support *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
39 * Cortex-A8(tm) TRM, ARM DDI 0344H *
40 * Cortex-A9(tm) TRM, ARM DDI 0407F *
41 * Cortex-A4(tm) TRM, ARM DDI 0363E *
42 * Cortex-A15(tm)TRM, ARM DDI 0438C *
44 ***************************************************************************/
50 #include "breakpoints.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
58 #include <helper/time_support.h>
60 static int cortex_a_poll(struct target
*target
);
61 static int cortex_a_debug_entry(struct target
*target
);
62 static int cortex_a_restore_context(struct target
*target
, bool bpwp
);
63 static int cortex_a_set_breakpoint(struct target
*target
,
64 struct breakpoint
*breakpoint
, uint8_t matchmode
);
65 static int cortex_a_set_context_breakpoint(struct target
*target
,
66 struct breakpoint
*breakpoint
, uint8_t matchmode
);
67 static int cortex_a_set_hybrid_breakpoint(struct target
*target
,
68 struct breakpoint
*breakpoint
);
69 static int cortex_a_unset_breakpoint(struct target
*target
,
70 struct breakpoint
*breakpoint
);
71 static int cortex_a_dap_read_coreregister_u32(struct target
*target
,
72 uint32_t *value
, int regnum
);
73 static int cortex_a_dap_write_coreregister_u32(struct target
*target
,
74 uint32_t value
, int regnum
);
75 static int cortex_a_mmu(struct target
*target
, int *enabled
);
76 static int cortex_a_mmu_modify(struct target
*target
, int enable
);
77 static int cortex_a_virt2phys(struct target
*target
,
78 target_addr_t virt
, target_addr_t
*phys
);
79 static int cortex_a_read_cpu_memory(struct target
*target
,
80 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
);
83 /* restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target
*target
)
86 int retval
= ERROR_OK
;
87 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
88 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
90 if (cortex_a
->cp15_control_reg
!= cortex_a
->cp15_control_reg_curr
) {
91 cortex_a
->cp15_control_reg_curr
= cortex_a
->cp15_control_reg
;
92 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93 retval
= armv7a
->arm
.mcr(target
, 15,
96 cortex_a
->cp15_control_reg
);
102 * Set up ARM core for memory access.
103 * If !phys_access, switch to SVC mode and make sure MMU is on
104 * If phys_access, switch off mmu
106 static int cortex_a_prep_memaccess(struct target
*target
, int phys_access
)
108 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
109 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
112 if (phys_access
== 0) {
113 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_SVC
);
114 cortex_a_mmu(target
, &mmu_enabled
);
116 cortex_a_mmu_modify(target
, 1);
117 if (cortex_a
->dacrfixup_mode
== CORTEX_A_DACRFIXUP_ON
) {
118 /* overwrite DACR to all-manager */
119 armv7a
->arm
.mcr(target
, 15,
124 cortex_a_mmu(target
, &mmu_enabled
);
126 cortex_a_mmu_modify(target
, 0);
132 * Restore ARM core after memory access.
133 * If !phys_access, switch to previous mode
134 * If phys_access, restore MMU setting
136 static int cortex_a_post_memaccess(struct target
*target
, int phys_access
)
138 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
139 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
141 if (phys_access
== 0) {
142 if (cortex_a
->dacrfixup_mode
== CORTEX_A_DACRFIXUP_ON
) {
144 armv7a
->arm
.mcr(target
, 15,
146 cortex_a
->cp15_dacr_reg
);
148 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_ANY
);
151 cortex_a_mmu(target
, &mmu_enabled
);
153 cortex_a_mmu_modify(target
, 1);
159 /* modify cp15_control_reg in order to enable or disable mmu for :
160 * - virt2phys address conversion
161 * - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target
*target
, int enable
)
164 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
165 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
166 int retval
= ERROR_OK
;
170 /* if mmu enabled at target stop and mmu not enable */
171 if (!(cortex_a
->cp15_control_reg
& 0x1U
)) {
172 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
175 if ((cortex_a
->cp15_control_reg_curr
& 0x1U
) == 0) {
176 cortex_a
->cp15_control_reg_curr
|= 0x1U
;
180 if ((cortex_a
->cp15_control_reg_curr
& 0x1U
) == 0x1U
) {
181 cortex_a
->cp15_control_reg_curr
&= ~0x1U
;
187 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32
,
188 enable
? "enable mmu" : "disable mmu",
189 cortex_a
->cp15_control_reg_curr
);
191 retval
= armv7a
->arm
.mcr(target
, 15,
194 cortex_a
->cp15_control_reg_curr
);
200 * Cortex-A Basic debug access, very low level assumes state is saved
202 static int cortex_a_init_debug_access(struct target
*target
)
204 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
207 /* lock memory-mapped access to debug registers to prevent
208 * software interference */
209 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
210 armv7a
->debug_base
+ CPUDBG_LOCKACCESS
, 0);
211 if (retval
!= ERROR_OK
)
214 /* Disable cacheline fills and force cache write-through in debug state */
215 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
216 armv7a
->debug_base
+ CPUDBG_DSCCR
, 0);
217 if (retval
!= ERROR_OK
)
220 /* Disable TLB lookup and refill/eviction in debug state */
221 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
222 armv7a
->debug_base
+ CPUDBG_DSMCR
, 0);
223 if (retval
!= ERROR_OK
)
226 retval
= dap_run(armv7a
->debug_ap
->dap
);
227 if (retval
!= ERROR_OK
)
230 /* Enabling of instruction execution in debug mode is done in debug_entry code */
232 /* Resync breakpoint registers */
234 /* Since this is likely called from init or reset, update target state information*/
235 return cortex_a_poll(target
);
238 static int cortex_a_wait_instrcmpl(struct target
*target
, uint32_t *dscr
, bool force
)
240 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
241 * Writes final value of DSCR into *dscr. Pass force to force always
242 * reading DSCR at least once. */
243 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
244 int64_t then
= timeval_ms();
245 while ((*dscr
& DSCR_INSTR_COMP
) == 0 || force
) {
247 int retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
248 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
249 if (retval
!= ERROR_OK
) {
250 LOG_ERROR("Could not read DSCR register");
253 if (timeval_ms() > then
+ 1000) {
254 LOG_ERROR("Timeout waiting for InstrCompl=1");
261 /* To reduce needless round-trips, pass in a pointer to the current
262 * DSCR value. Initialize it to zero if you just need to know the
263 * value on return from this function; or DSCR_INSTR_COMP if you
264 * happen to know that no instruction is pending.
266 static int cortex_a_exec_opcode(struct target
*target
,
267 uint32_t opcode
, uint32_t *dscr_p
)
271 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
273 dscr
= dscr_p
? *dscr_p
: 0;
275 LOG_DEBUG("exec opcode 0x%08" PRIx32
, opcode
);
277 /* Wait for InstrCompl bit to be set */
278 retval
= cortex_a_wait_instrcmpl(target
, dscr_p
, false);
279 if (retval
!= ERROR_OK
)
282 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
283 armv7a
->debug_base
+ CPUDBG_ITR
, opcode
);
284 if (retval
!= ERROR_OK
)
287 int64_t then
= timeval_ms();
289 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
290 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
291 if (retval
!= ERROR_OK
) {
292 LOG_ERROR("Could not read DSCR register");
295 if (timeval_ms() > then
+ 1000) {
296 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
299 } while ((dscr
& DSCR_INSTR_COMP
) == 0); /* Wait for InstrCompl bit to be set */
307 /**************************************************************************
308 Read core register with very few exec_opcode, fast but needs work_area.
309 This can cause problems with MMU active.
310 **************************************************************************/
311 static int cortex_a_read_regs_through_mem(struct target
*target
, uint32_t address
,
314 int retval
= ERROR_OK
;
315 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
317 retval
= cortex_a_dap_read_coreregister_u32(target
, regfile
, 0);
318 if (retval
!= ERROR_OK
)
320 retval
= cortex_a_dap_write_coreregister_u32(target
, address
, 0);
321 if (retval
!= ERROR_OK
)
323 retval
= cortex_a_exec_opcode(target
, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL
);
324 if (retval
!= ERROR_OK
)
327 retval
= mem_ap_read_buf(armv7a
->memory_ap
,
328 (uint8_t *)(®file
[1]), 4, 15, address
);
333 static int cortex_a_dap_read_coreregister_u32(struct target
*target
,
334 uint32_t *value
, int regnum
)
336 int retval
= ERROR_OK
;
337 uint8_t reg
= regnum
&0xFF;
339 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
345 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
346 retval
= cortex_a_exec_opcode(target
,
347 ARMV4_5_MCR(14, 0, reg
, 0, 5, 0),
349 if (retval
!= ERROR_OK
)
351 } else if (reg
== 15) {
352 /* "MOV r0, r15"; then move r0 to DCCTX */
353 retval
= cortex_a_exec_opcode(target
, 0xE1A0000F, &dscr
);
354 if (retval
!= ERROR_OK
)
356 retval
= cortex_a_exec_opcode(target
,
357 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
359 if (retval
!= ERROR_OK
)
362 /* "MRS r0, CPSR" or "MRS r0, SPSR"
363 * then move r0 to DCCTX
365 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRS(0, reg
& 1), &dscr
);
366 if (retval
!= ERROR_OK
)
368 retval
= cortex_a_exec_opcode(target
,
369 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
371 if (retval
!= ERROR_OK
)
375 /* Wait for DTRRXfull then read DTRRTX */
376 int64_t then
= timeval_ms();
377 while ((dscr
& DSCR_DTR_TX_FULL
) == 0) {
378 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
379 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
380 if (retval
!= ERROR_OK
)
382 if (timeval_ms() > then
+ 1000) {
383 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
388 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
389 armv7a
->debug_base
+ CPUDBG_DTRTX
, value
);
390 LOG_DEBUG("read DCC 0x%08" PRIx32
, *value
);
395 static int cortex_a_dap_write_coreregister_u32(struct target
*target
,
396 uint32_t value
, int regnum
)
398 int retval
= ERROR_OK
;
399 uint8_t Rd
= regnum
&0xFF;
401 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
403 LOG_DEBUG("register %i, value 0x%08" PRIx32
, regnum
, value
);
405 /* Check that DCCRX is not full */
406 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
407 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
408 if (retval
!= ERROR_OK
)
410 if (dscr
& DSCR_DTR_RX_FULL
) {
411 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32
, dscr
);
412 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
413 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
415 if (retval
!= ERROR_OK
)
422 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
423 LOG_DEBUG("write DCC 0x%08" PRIx32
, value
);
424 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
425 armv7a
->debug_base
+ CPUDBG_DTRRX
, value
);
426 if (retval
!= ERROR_OK
)
430 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
431 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, Rd
, 0, 5, 0),
434 if (retval
!= ERROR_OK
)
436 } else if (Rd
== 15) {
437 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
440 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
442 if (retval
!= ERROR_OK
)
444 retval
= cortex_a_exec_opcode(target
, 0xE1A0F000, &dscr
);
445 if (retval
!= ERROR_OK
)
448 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
449 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
451 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
453 if (retval
!= ERROR_OK
)
455 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MSR_GP(0, 0xF, Rd
& 1),
457 if (retval
!= ERROR_OK
)
460 /* "Prefetch flush" after modifying execution status in CPSR */
462 retval
= cortex_a_exec_opcode(target
,
463 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
465 if (retval
!= ERROR_OK
)
473 /* Write to memory mapped registers directly with no cache or mmu handling */
474 static int cortex_a_dap_write_memap_register_u32(struct target
*target
,
479 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
481 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
, address
, value
);
487 * Cortex-A implementation of Debug Programmer's Model
489 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
490 * so there's no need to poll for it before executing an instruction.
492 * NOTE that in several of these cases the "stall" mode might be useful.
493 * It'd let us queue a few operations together... prepare/finish might
494 * be the places to enable/disable that mode.
497 static inline struct cortex_a_common
*dpm_to_a(struct arm_dpm
*dpm
)
499 return container_of(dpm
, struct cortex_a_common
, armv7a_common
.dpm
);
502 static int cortex_a_write_dcc(struct cortex_a_common
*a
, uint32_t data
)
504 LOG_DEBUG("write DCC 0x%08" PRIx32
, data
);
505 return mem_ap_write_u32(a
->armv7a_common
.debug_ap
,
506 a
->armv7a_common
.debug_base
+ CPUDBG_DTRRX
, data
);
509 static int cortex_a_read_dcc(struct cortex_a_common
*a
, uint32_t *data
,
512 uint32_t dscr
= DSCR_INSTR_COMP
;
518 /* Wait for DTRRXfull */
519 int64_t then
= timeval_ms();
520 while ((dscr
& DSCR_DTR_TX_FULL
) == 0) {
521 retval
= mem_ap_read_atomic_u32(a
->armv7a_common
.debug_ap
,
522 a
->armv7a_common
.debug_base
+ CPUDBG_DSCR
,
524 if (retval
!= ERROR_OK
)
526 if (timeval_ms() > then
+ 1000) {
527 LOG_ERROR("Timeout waiting for read dcc");
532 retval
= mem_ap_read_atomic_u32(a
->armv7a_common
.debug_ap
,
533 a
->armv7a_common
.debug_base
+ CPUDBG_DTRTX
, data
);
534 if (retval
!= ERROR_OK
)
536 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
544 static int cortex_a_dpm_prepare(struct arm_dpm
*dpm
)
546 struct cortex_a_common
*a
= dpm_to_a(dpm
);
550 /* set up invariant: INSTR_COMP is set after ever DPM operation */
551 int64_t then
= timeval_ms();
553 retval
= mem_ap_read_atomic_u32(a
->armv7a_common
.debug_ap
,
554 a
->armv7a_common
.debug_base
+ CPUDBG_DSCR
,
556 if (retval
!= ERROR_OK
)
558 if ((dscr
& DSCR_INSTR_COMP
) != 0)
560 if (timeval_ms() > then
+ 1000) {
561 LOG_ERROR("Timeout waiting for dpm prepare");
566 /* this "should never happen" ... */
567 if (dscr
& DSCR_DTR_RX_FULL
) {
568 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32
, dscr
);
570 retval
= cortex_a_exec_opcode(
571 a
->armv7a_common
.arm
.target
,
572 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
574 if (retval
!= ERROR_OK
)
581 static int cortex_a_dpm_finish(struct arm_dpm
*dpm
)
583 /* REVISIT what could be done here? */
587 static int cortex_a_instr_write_data_dcc(struct arm_dpm
*dpm
,
588 uint32_t opcode
, uint32_t data
)
590 struct cortex_a_common
*a
= dpm_to_a(dpm
);
592 uint32_t dscr
= DSCR_INSTR_COMP
;
594 retval
= cortex_a_write_dcc(a
, data
);
595 if (retval
!= ERROR_OK
)
598 return cortex_a_exec_opcode(
599 a
->armv7a_common
.arm
.target
,
604 static int cortex_a_instr_write_data_r0(struct arm_dpm
*dpm
,
605 uint32_t opcode
, uint32_t data
)
607 struct cortex_a_common
*a
= dpm_to_a(dpm
);
608 uint32_t dscr
= DSCR_INSTR_COMP
;
611 retval
= cortex_a_write_dcc(a
, data
);
612 if (retval
!= ERROR_OK
)
615 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
616 retval
= cortex_a_exec_opcode(
617 a
->armv7a_common
.arm
.target
,
618 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
620 if (retval
!= ERROR_OK
)
623 /* then the opcode, taking data from R0 */
624 retval
= cortex_a_exec_opcode(
625 a
->armv7a_common
.arm
.target
,
632 static int cortex_a_instr_cpsr_sync(struct arm_dpm
*dpm
)
634 struct target
*target
= dpm
->arm
->target
;
635 uint32_t dscr
= DSCR_INSTR_COMP
;
637 /* "Prefetch flush" after modifying execution status in CPSR */
638 return cortex_a_exec_opcode(target
,
639 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
643 static int cortex_a_instr_read_data_dcc(struct arm_dpm
*dpm
,
644 uint32_t opcode
, uint32_t *data
)
646 struct cortex_a_common
*a
= dpm_to_a(dpm
);
648 uint32_t dscr
= DSCR_INSTR_COMP
;
650 /* the opcode, writing data to DCC */
651 retval
= cortex_a_exec_opcode(
652 a
->armv7a_common
.arm
.target
,
655 if (retval
!= ERROR_OK
)
658 return cortex_a_read_dcc(a
, data
, &dscr
);
662 static int cortex_a_instr_read_data_r0(struct arm_dpm
*dpm
,
663 uint32_t opcode
, uint32_t *data
)
665 struct cortex_a_common
*a
= dpm_to_a(dpm
);
666 uint32_t dscr
= DSCR_INSTR_COMP
;
669 /* the opcode, writing data to R0 */
670 retval
= cortex_a_exec_opcode(
671 a
->armv7a_common
.arm
.target
,
674 if (retval
!= ERROR_OK
)
677 /* write R0 to DCC */
678 retval
= cortex_a_exec_opcode(
679 a
->armv7a_common
.arm
.target
,
680 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
682 if (retval
!= ERROR_OK
)
685 return cortex_a_read_dcc(a
, data
, &dscr
);
688 static int cortex_a_bpwp_enable(struct arm_dpm
*dpm
, unsigned index_t
,
689 uint32_t addr
, uint32_t control
)
691 struct cortex_a_common
*a
= dpm_to_a(dpm
);
692 uint32_t vr
= a
->armv7a_common
.debug_base
;
693 uint32_t cr
= a
->armv7a_common
.debug_base
;
697 case 0 ... 15: /* breakpoints */
698 vr
+= CPUDBG_BVR_BASE
;
699 cr
+= CPUDBG_BCR_BASE
;
701 case 16 ... 31: /* watchpoints */
702 vr
+= CPUDBG_WVR_BASE
;
703 cr
+= CPUDBG_WCR_BASE
;
712 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
713 (unsigned) vr
, (unsigned) cr
);
715 retval
= cortex_a_dap_write_memap_register_u32(dpm
->arm
->target
,
717 if (retval
!= ERROR_OK
)
719 retval
= cortex_a_dap_write_memap_register_u32(dpm
->arm
->target
,
724 static int cortex_a_bpwp_disable(struct arm_dpm
*dpm
, unsigned index_t
)
726 struct cortex_a_common
*a
= dpm_to_a(dpm
);
731 cr
= a
->armv7a_common
.debug_base
+ CPUDBG_BCR_BASE
;
734 cr
= a
->armv7a_common
.debug_base
+ CPUDBG_WCR_BASE
;
742 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr
);
744 /* clear control register */
745 return cortex_a_dap_write_memap_register_u32(dpm
->arm
->target
, cr
, 0);
748 static int cortex_a_dpm_setup(struct cortex_a_common
*a
, uint32_t didr
)
750 struct arm_dpm
*dpm
= &a
->armv7a_common
.dpm
;
753 dpm
->arm
= &a
->armv7a_common
.arm
;
756 dpm
->prepare
= cortex_a_dpm_prepare
;
757 dpm
->finish
= cortex_a_dpm_finish
;
759 dpm
->instr_write_data_dcc
= cortex_a_instr_write_data_dcc
;
760 dpm
->instr_write_data_r0
= cortex_a_instr_write_data_r0
;
761 dpm
->instr_cpsr_sync
= cortex_a_instr_cpsr_sync
;
763 dpm
->instr_read_data_dcc
= cortex_a_instr_read_data_dcc
;
764 dpm
->instr_read_data_r0
= cortex_a_instr_read_data_r0
;
766 dpm
->bpwp_enable
= cortex_a_bpwp_enable
;
767 dpm
->bpwp_disable
= cortex_a_bpwp_disable
;
769 retval
= arm_dpm_setup(dpm
);
770 if (retval
== ERROR_OK
)
771 retval
= arm_dpm_initialize(dpm
);
775 static struct target
*get_cortex_a(struct target
*target
, int32_t coreid
)
777 struct target_list
*head
;
781 while (head
!= (struct target_list
*)NULL
) {
783 if ((curr
->coreid
== coreid
) && (curr
->state
== TARGET_HALTED
))
789 static int cortex_a_halt(struct target
*target
);
791 static int cortex_a_halt_smp(struct target
*target
)
794 struct target_list
*head
;
797 while (head
!= (struct target_list
*)NULL
) {
799 if ((curr
!= target
) && (curr
->state
!= TARGET_HALTED
)
800 && target_was_examined(curr
))
801 retval
+= cortex_a_halt(curr
);
807 static int update_halt_gdb(struct target
*target
)
810 if (target
->gdb_service
&& target
->gdb_service
->core
[0] == -1) {
811 target
->gdb_service
->target
= target
;
812 target
->gdb_service
->core
[0] = target
->coreid
;
813 retval
+= cortex_a_halt_smp(target
);
819 * Cortex-A Run control
822 static int cortex_a_poll(struct target
*target
)
824 int retval
= ERROR_OK
;
826 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
827 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
828 enum target_state prev_target_state
= target
->state
;
829 /* toggle to another core is done by gdb as follow */
830 /* maint packet J core_id */
832 /* the next polling trigger an halt event sent to gdb */
833 if ((target
->state
== TARGET_HALTED
) && (target
->smp
) &&
834 (target
->gdb_service
) &&
835 (target
->gdb_service
->target
== NULL
)) {
836 target
->gdb_service
->target
=
837 get_cortex_a(target
, target
->gdb_service
->core
[1]);
838 target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
841 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
842 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
843 if (retval
!= ERROR_OK
)
845 cortex_a
->cpudbg_dscr
= dscr
;
847 if (DSCR_RUN_MODE(dscr
) == (DSCR_CORE_HALTED
| DSCR_CORE_RESTARTED
)) {
848 if (prev_target_state
!= TARGET_HALTED
) {
849 /* We have a halting debug event */
850 LOG_DEBUG("Target halted");
851 target
->state
= TARGET_HALTED
;
852 if ((prev_target_state
== TARGET_RUNNING
)
853 || (prev_target_state
== TARGET_UNKNOWN
)
854 || (prev_target_state
== TARGET_RESET
)) {
855 retval
= cortex_a_debug_entry(target
);
856 if (retval
!= ERROR_OK
)
859 retval
= update_halt_gdb(target
);
860 if (retval
!= ERROR_OK
)
864 if (arm_semihosting(target
, &retval
) != 0)
867 target_call_event_callbacks(target
,
868 TARGET_EVENT_HALTED
);
870 if (prev_target_state
== TARGET_DEBUG_RUNNING
) {
873 retval
= cortex_a_debug_entry(target
);
874 if (retval
!= ERROR_OK
)
877 retval
= update_halt_gdb(target
);
878 if (retval
!= ERROR_OK
)
882 target_call_event_callbacks(target
,
883 TARGET_EVENT_DEBUG_HALTED
);
887 target
->state
= TARGET_RUNNING
;
892 static int cortex_a_halt(struct target
*target
)
894 int retval
= ERROR_OK
;
896 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
899 * Tell the core to be halted by writing DRCR with 0x1
900 * and then wait for the core to be halted.
902 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
903 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_HALT
);
904 if (retval
!= ERROR_OK
)
908 * enter halting debug mode
910 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
911 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
912 if (retval
!= ERROR_OK
)
915 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
916 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
| DSCR_HALT_DBG_MODE
);
917 if (retval
!= ERROR_OK
)
920 int64_t then
= timeval_ms();
922 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
923 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
924 if (retval
!= ERROR_OK
)
926 if ((dscr
& DSCR_CORE_HALTED
) != 0)
928 if (timeval_ms() > then
+ 1000) {
929 LOG_ERROR("Timeout waiting for halt");
934 target
->debug_reason
= DBG_REASON_DBGRQ
;
939 static int cortex_a_internal_restore(struct target
*target
, int current
,
940 target_addr_t
*address
, int handle_breakpoints
, int debug_execution
)
942 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
943 struct arm
*arm
= &armv7a
->arm
;
947 if (!debug_execution
)
948 target_free_all_working_areas(target
);
951 if (debug_execution
) {
952 /* Disable interrupts */
953 /* We disable interrupts in the PRIMASK register instead of
954 * masking with C_MASKINTS,
955 * This is probably the same issue as Cortex-M3 Errata 377493:
956 * C_MASKINTS in parallel with disabled interrupts can cause
957 * local faults to not be taken. */
958 buf_set_u32(armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].value
, 0, 32, 1);
959 armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].dirty
= 1;
960 armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].valid
= 1;
962 /* Make sure we are in Thumb mode */
963 buf_set_u32(armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].value
, 0, 32,
964 buf_get_u32(armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].value
, 0,
966 armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].dirty
= 1;
967 armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].valid
= 1;
971 /* current = 1: continue on current pc, otherwise continue at <address> */
972 resume_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
974 resume_pc
= *address
;
976 *address
= resume_pc
;
978 /* Make sure that the Armv7 gdb thumb fixups does not
979 * kill the return address
981 switch (arm
->core_state
) {
983 resume_pc
&= 0xFFFFFFFC;
985 case ARM_STATE_THUMB
:
986 case ARM_STATE_THUMB_EE
:
987 /* When the return address is loaded into PC
988 * bit 0 must be 1 to stay in Thumb state
992 case ARM_STATE_JAZELLE
:
993 LOG_ERROR("How do I resume into Jazelle state??");
995 case ARM_STATE_AARCH64
:
996 LOG_ERROR("Shoudn't be in AARCH64 state");
999 LOG_DEBUG("resume pc = 0x%08" PRIx32
, resume_pc
);
1000 buf_set_u32(arm
->pc
->value
, 0, 32, resume_pc
);
1004 /* restore dpm_mode at system halt */
1005 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_ANY
);
1006 /* called it now before restoring context because it uses cpu
1007 * register r0 for restoring cp15 control register */
1008 retval
= cortex_a_restore_cp15_control_reg(target
);
1009 if (retval
!= ERROR_OK
)
1011 retval
= cortex_a_restore_context(target
, handle_breakpoints
);
1012 if (retval
!= ERROR_OK
)
1014 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1015 target
->state
= TARGET_RUNNING
;
1017 /* registers are now invalid */
1018 register_cache_invalidate(arm
->core_cache
);
1021 /* the front-end may request us not to handle breakpoints */
1022 if (handle_breakpoints
) {
1023 /* Single step past breakpoint at current address */
1024 breakpoint
= breakpoint_find(target
, resume_pc
);
1026 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint
->address
);
1027 cortex_m3_unset_breakpoint(target
, breakpoint
);
1028 cortex_m3_single_step_core(target
);
1029 cortex_m3_set_breakpoint(target
, breakpoint
);
1037 static int cortex_a_internal_restart(struct target
*target
)
1039 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1040 struct arm
*arm
= &armv7a
->arm
;
1044 * * Restart core and wait for it to be started. Clear ITRen and sticky
1045 * * exception flags: see ARMv7 ARM, C5.9.
1047 * REVISIT: for single stepping, we probably want to
1048 * disable IRQs by default, with optional override...
1051 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1052 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
1053 if (retval
!= ERROR_OK
)
1056 if ((dscr
& DSCR_INSTR_COMP
) == 0)
1057 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1059 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1060 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
& ~DSCR_ITR_EN
);
1061 if (retval
!= ERROR_OK
)
1064 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1065 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_RESTART
|
1066 DRCR_CLEAR_EXCEPTIONS
);
1067 if (retval
!= ERROR_OK
)
1070 int64_t then
= timeval_ms();
1072 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1073 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
1074 if (retval
!= ERROR_OK
)
1076 if ((dscr
& DSCR_CORE_RESTARTED
) != 0)
1078 if (timeval_ms() > then
+ 1000) {
1079 LOG_ERROR("Timeout waiting for resume");
1084 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1085 target
->state
= TARGET_RUNNING
;
1087 /* registers are now invalid */
1088 register_cache_invalidate(arm
->core_cache
);
1093 static int cortex_a_restore_smp(struct target
*target
, int handle_breakpoints
)
1096 struct target_list
*head
;
1097 struct target
*curr
;
1098 target_addr_t address
;
1099 head
= target
->head
;
1100 while (head
!= (struct target_list
*)NULL
) {
1101 curr
= head
->target
;
1102 if ((curr
!= target
) && (curr
->state
!= TARGET_RUNNING
)
1103 && target_was_examined(curr
)) {
1104 /* resume current address , not in step mode */
1105 retval
+= cortex_a_internal_restore(curr
, 1, &address
,
1106 handle_breakpoints
, 0);
1107 retval
+= cortex_a_internal_restart(curr
);
1115 static int cortex_a_resume(struct target
*target
, int current
,
1116 target_addr_t address
, int handle_breakpoints
, int debug_execution
)
1119 /* dummy resume for smp toggle in order to reduce gdb impact */
1120 if ((target
->smp
) && (target
->gdb_service
->core
[1] != -1)) {
1121 /* simulate a start and halt of target */
1122 target
->gdb_service
->target
= NULL
;
1123 target
->gdb_service
->core
[0] = target
->gdb_service
->core
[1];
1124 /* fake resume at next poll we play the target core[1], see poll*/
1125 target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
1128 cortex_a_internal_restore(target
, current
, &address
, handle_breakpoints
, debug_execution
);
1130 target
->gdb_service
->core
[0] = -1;
1131 retval
= cortex_a_restore_smp(target
, handle_breakpoints
);
1132 if (retval
!= ERROR_OK
)
1135 cortex_a_internal_restart(target
);
1137 if (!debug_execution
) {
1138 target
->state
= TARGET_RUNNING
;
1139 target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
1140 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT
, address
);
1142 target
->state
= TARGET_DEBUG_RUNNING
;
1143 target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
);
1144 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT
, address
);
1150 static int cortex_a_debug_entry(struct target
*target
)
1153 uint32_t regfile
[16], cpsr
, spsr
, dscr
;
1154 int retval
= ERROR_OK
;
1155 struct working_area
*regfile_working_area
= NULL
;
1156 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1157 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1158 struct arm
*arm
= &armv7a
->arm
;
1161 LOG_DEBUG("dscr = 0x%08" PRIx32
, cortex_a
->cpudbg_dscr
);
1163 /* REVISIT surely we should not re-read DSCR !! */
1164 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1165 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
1166 if (retval
!= ERROR_OK
)
1169 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1170 * imprecise data aborts get discarded by issuing a Data
1171 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1174 /* Enable the ITR execution once we are in debug mode */
1175 dscr
|= DSCR_ITR_EN
;
1176 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1177 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
1178 if (retval
!= ERROR_OK
)
1181 /* Examine debug reason */
1182 arm_dpm_report_dscr(&armv7a
->dpm
, cortex_a
->cpudbg_dscr
);
1184 /* save address of instruction that triggered the watchpoint? */
1185 if (target
->debug_reason
== DBG_REASON_WATCHPOINT
) {
1188 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1189 armv7a
->debug_base
+ CPUDBG_WFAR
,
1191 if (retval
!= ERROR_OK
)
1193 arm_dpm_report_wfar(&armv7a
->dpm
, wfar
);
1196 /* REVISIT fast_reg_read is never set ... */
1198 /* Examine target state and mode */
1199 if (cortex_a
->fast_reg_read
)
1200 target_alloc_working_area(target
, 64, ®file_working_area
);
1203 /* First load register acessible through core debug port*/
1204 if (!regfile_working_area
)
1205 retval
= arm_dpm_read_current_registers(&armv7a
->dpm
);
1207 retval
= cortex_a_read_regs_through_mem(target
,
1208 regfile_working_area
->address
, regfile
);
1210 target_free_working_area(target
, regfile_working_area
);
1211 if (retval
!= ERROR_OK
)
1214 /* read Current PSR */
1215 retval
= cortex_a_dap_read_coreregister_u32(target
, &cpsr
, 16);
1216 /* store current cpsr */
1217 if (retval
!= ERROR_OK
)
1220 LOG_DEBUG("cpsr: %8.8" PRIx32
, cpsr
);
1222 arm_set_cpsr(arm
, cpsr
);
1225 for (i
= 0; i
<= ARM_PC
; i
++) {
1226 reg
= arm_reg_current(arm
, i
);
1228 buf_set_u32(reg
->value
, 0, 32, regfile
[i
]);
1233 /* Fixup PC Resume Address */
1234 if (cpsr
& (1 << 5)) {
1235 /* T bit set for Thumb or ThumbEE state */
1236 regfile
[ARM_PC
] -= 4;
1239 regfile
[ARM_PC
] -= 8;
1243 buf_set_u32(reg
->value
, 0, 32, regfile
[ARM_PC
]);
1244 reg
->dirty
= reg
->valid
;
1248 /* read Saved PSR */
1249 retval
= cortex_a_dap_read_coreregister_u32(target
, &spsr
, 17);
1250 /* store current spsr */
1251 if (retval
!= ERROR_OK
)
1255 buf_set_u32(reg
->value
, 0, 32, spsr
);
1261 /* TODO, Move this */
1262 uint32_t cp15_control_register
, cp15_cacr
, cp15_nacr
;
1263 cortex_a_read_cp(target
, &cp15_control_register
, 15, 0, 1, 0, 0);
1264 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register
);
1266 cortex_a_read_cp(target
, &cp15_cacr
, 15, 0, 1, 0, 2);
1267 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr
);
1269 cortex_a_read_cp(target
, &cp15_nacr
, 15, 0, 1, 1, 2);
1270 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr
);
1273 /* Are we in an exception handler */
1274 /* armv4_5->exception_number = 0; */
1275 if (armv7a
->post_debug_entry
) {
1276 retval
= armv7a
->post_debug_entry(target
);
1277 if (retval
!= ERROR_OK
)
1284 static int cortex_a_post_debug_entry(struct target
*target
)
1286 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1287 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1290 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1291 retval
= armv7a
->arm
.mrc(target
, 15,
1292 0, 0, /* op1, op2 */
1293 1, 0, /* CRn, CRm */
1294 &cortex_a
->cp15_control_reg
);
1295 if (retval
!= ERROR_OK
)
1297 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32
, cortex_a
->cp15_control_reg
);
1298 cortex_a
->cp15_control_reg_curr
= cortex_a
->cp15_control_reg
;
1300 if (armv7a
->armv7a_mmu
.armv7a_cache
.info
== -1)
1301 armv7a_identify_cache(target
);
1303 if (armv7a
->is_armv7r
) {
1304 armv7a
->armv7a_mmu
.mmu_enabled
= 0;
1306 armv7a
->armv7a_mmu
.mmu_enabled
=
1307 (cortex_a
->cp15_control_reg
& 0x1U
) ? 1 : 0;
1309 armv7a
->armv7a_mmu
.armv7a_cache
.d_u_cache_enabled
=
1310 (cortex_a
->cp15_control_reg
& 0x4U
) ? 1 : 0;
1311 armv7a
->armv7a_mmu
.armv7a_cache
.i_cache_enabled
=
1312 (cortex_a
->cp15_control_reg
& 0x1000U
) ? 1 : 0;
1313 cortex_a
->curr_mode
= armv7a
->arm
.core_mode
;
1315 /* switch to SVC mode to read DACR */
1316 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_SVC
);
1317 armv7a
->arm
.mrc(target
, 15,
1319 &cortex_a
->cp15_dacr_reg
);
1321 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32
,
1322 cortex_a
->cp15_dacr_reg
);
1324 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_ANY
);
1328 int cortex_a_set_dscr_bits(struct target
*target
, unsigned long bit_mask
, unsigned long value
)
1330 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1334 int retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1335 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
1336 if (ERROR_OK
!= retval
)
1339 /* clear bitfield */
1342 dscr
|= value
& bit_mask
;
1344 /* write new DSCR */
1345 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1346 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
1350 static int cortex_a_step(struct target
*target
, int current
, target_addr_t address
,
1351 int handle_breakpoints
)
1353 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1354 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1355 struct arm
*arm
= &armv7a
->arm
;
1356 struct breakpoint
*breakpoint
= NULL
;
1357 struct breakpoint stepbreakpoint
;
1361 if (target
->state
!= TARGET_HALTED
) {
1362 LOG_WARNING("target not halted");
1363 return ERROR_TARGET_NOT_HALTED
;
1366 /* current = 1: continue on current pc, otherwise continue at <address> */
1369 buf_set_u32(r
->value
, 0, 32, address
);
1371 address
= buf_get_u32(r
->value
, 0, 32);
1373 /* The front-end may request us not to handle breakpoints.
1374 * But since Cortex-A uses breakpoint for single step,
1375 * we MUST handle breakpoints.
1377 handle_breakpoints
= 1;
1378 if (handle_breakpoints
) {
1379 breakpoint
= breakpoint_find(target
, address
);
1381 cortex_a_unset_breakpoint(target
, breakpoint
);
1384 /* Setup single step breakpoint */
1385 stepbreakpoint
.address
= address
;
1386 stepbreakpoint
.length
= (arm
->core_state
== ARM_STATE_THUMB
)
1388 stepbreakpoint
.type
= BKPT_HARD
;
1389 stepbreakpoint
.set
= 0;
1391 /* Disable interrupts during single step if requested */
1392 if (cortex_a
->isrmasking_mode
== CORTEX_A_ISRMASK_ON
) {
1393 retval
= cortex_a_set_dscr_bits(target
, DSCR_INT_DIS
, DSCR_INT_DIS
);
1394 if (ERROR_OK
!= retval
)
1398 /* Break on IVA mismatch */
1399 cortex_a_set_breakpoint(target
, &stepbreakpoint
, 0x04);
1401 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1403 retval
= cortex_a_resume(target
, 1, address
, 0, 0);
1404 if (retval
!= ERROR_OK
)
1407 int64_t then
= timeval_ms();
1408 while (target
->state
!= TARGET_HALTED
) {
1409 retval
= cortex_a_poll(target
);
1410 if (retval
!= ERROR_OK
)
1412 if (timeval_ms() > then
+ 1000) {
1413 LOG_ERROR("timeout waiting for target halt");
1418 cortex_a_unset_breakpoint(target
, &stepbreakpoint
);
1420 /* Re-enable interrupts if they were disabled */
1421 if (cortex_a
->isrmasking_mode
== CORTEX_A_ISRMASK_ON
) {
1422 retval
= cortex_a_set_dscr_bits(target
, DSCR_INT_DIS
, 0);
1423 if (ERROR_OK
!= retval
)
1428 target
->debug_reason
= DBG_REASON_BREAKPOINT
;
1431 cortex_a_set_breakpoint(target
, breakpoint
, 0);
1433 if (target
->state
!= TARGET_HALTED
)
1434 LOG_DEBUG("target stepped");
1439 static int cortex_a_restore_context(struct target
*target
, bool bpwp
)
1441 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1445 if (armv7a
->pre_restore_context
)
1446 armv7a
->pre_restore_context(target
);
1448 return arm_dpm_write_dirty_registers(&armv7a
->dpm
, bpwp
);
1452 * Cortex-A Breakpoint and watchpoint functions
1455 /* Setup hardware Breakpoint Register Pair */
1456 static int cortex_a_set_breakpoint(struct target
*target
,
1457 struct breakpoint
*breakpoint
, uint8_t matchmode
)
1462 uint8_t byte_addr_select
= 0x0F;
1463 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1464 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1465 struct cortex_a_brp
*brp_list
= cortex_a
->brp_list
;
1467 if (breakpoint
->set
) {
1468 LOG_WARNING("breakpoint already set");
1472 if (breakpoint
->type
== BKPT_HARD
) {
1473 while (brp_list
[brp_i
].used
&& (brp_i
< cortex_a
->brp_num
))
1475 if (brp_i
>= cortex_a
->brp_num
) {
1476 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1477 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1479 breakpoint
->set
= brp_i
+ 1;
1480 if (breakpoint
->length
== 2)
1481 byte_addr_select
= (3 << (breakpoint
->address
& 0x02));
1482 control
= ((matchmode
& 0x7) << 20)
1483 | (byte_addr_select
<< 5)
1485 brp_list
[brp_i
].used
= 1;
1486 brp_list
[brp_i
].value
= (breakpoint
->address
& 0xFFFFFFFC);
1487 brp_list
[brp_i
].control
= control
;
1488 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1489 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1490 brp_list
[brp_i
].value
);
1491 if (retval
!= ERROR_OK
)
1493 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1494 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1495 brp_list
[brp_i
].control
);
1496 if (retval
!= ERROR_OK
)
1498 LOG_DEBUG("brp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1499 brp_list
[brp_i
].control
,
1500 brp_list
[brp_i
].value
);
1501 } else if (breakpoint
->type
== BKPT_SOFT
) {
1503 /* length == 2: Thumb breakpoint */
1504 if (breakpoint
->length
== 2)
1505 buf_set_u32(code
, 0, 32, ARMV5_T_BKPT(0x11));
1507 /* length == 3: Thumb-2 breakpoint, actual encoding is
1508 * a regular Thumb BKPT instruction but we replace a
1509 * 32bit Thumb-2 instruction, so fix-up the breakpoint
1512 if (breakpoint
->length
== 3) {
1513 buf_set_u32(code
, 0, 32, ARMV5_T_BKPT(0x11));
1514 breakpoint
->length
= 4;
1516 /* length == 4, normal ARM breakpoint */
1517 buf_set_u32(code
, 0, 32, ARMV5_BKPT(0x11));
1519 retval
= target_read_memory(target
,
1520 breakpoint
->address
& 0xFFFFFFFE,
1521 breakpoint
->length
, 1,
1522 breakpoint
->orig_instr
);
1523 if (retval
!= ERROR_OK
)
1526 /* make sure data cache is cleaned & invalidated down to PoC */
1527 if (!armv7a
->armv7a_mmu
.armv7a_cache
.auto_cache_enabled
) {
1528 armv7a_cache_flush_virt(target
, breakpoint
->address
,
1529 breakpoint
->length
);
1532 retval
= target_write_memory(target
,
1533 breakpoint
->address
& 0xFFFFFFFE,
1534 breakpoint
->length
, 1, code
);
1535 if (retval
!= ERROR_OK
)
1538 /* update i-cache at breakpoint location */
1539 armv7a_l1_d_cache_inval_virt(target
, breakpoint
->address
,
1540 breakpoint
->length
);
1541 armv7a_l1_i_cache_inval_virt(target
, breakpoint
->address
,
1542 breakpoint
->length
);
1544 breakpoint
->set
= 0x11; /* Any nice value but 0 */
1550 static int cortex_a_set_context_breakpoint(struct target
*target
,
1551 struct breakpoint
*breakpoint
, uint8_t matchmode
)
1553 int retval
= ERROR_FAIL
;
1556 uint8_t byte_addr_select
= 0x0F;
1557 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1558 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1559 struct cortex_a_brp
*brp_list
= cortex_a
->brp_list
;
1561 if (breakpoint
->set
) {
1562 LOG_WARNING("breakpoint already set");
1565 /*check available context BRPs*/
1566 while ((brp_list
[brp_i
].used
||
1567 (brp_list
[brp_i
].type
!= BRP_CONTEXT
)) && (brp_i
< cortex_a
->brp_num
))
1570 if (brp_i
>= cortex_a
->brp_num
) {
1571 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1575 breakpoint
->set
= brp_i
+ 1;
1576 control
= ((matchmode
& 0x7) << 20)
1577 | (byte_addr_select
<< 5)
1579 brp_list
[brp_i
].used
= 1;
1580 brp_list
[brp_i
].value
= (breakpoint
->asid
);
1581 brp_list
[brp_i
].control
= control
;
1582 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1583 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1584 brp_list
[brp_i
].value
);
1585 if (retval
!= ERROR_OK
)
1587 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1588 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1589 brp_list
[brp_i
].control
);
1590 if (retval
!= ERROR_OK
)
1592 LOG_DEBUG("brp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1593 brp_list
[brp_i
].control
,
1594 brp_list
[brp_i
].value
);
1599 static int cortex_a_set_hybrid_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1601 int retval
= ERROR_FAIL
;
1602 int brp_1
= 0; /* holds the contextID pair */
1603 int brp_2
= 0; /* holds the IVA pair */
1604 uint32_t control_CTX
, control_IVA
;
1605 uint8_t CTX_byte_addr_select
= 0x0F;
1606 uint8_t IVA_byte_addr_select
= 0x0F;
1607 uint8_t CTX_machmode
= 0x03;
1608 uint8_t IVA_machmode
= 0x01;
1609 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1610 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1611 struct cortex_a_brp
*brp_list
= cortex_a
->brp_list
;
1613 if (breakpoint
->set
) {
1614 LOG_WARNING("breakpoint already set");
1617 /*check available context BRPs*/
1618 while ((brp_list
[brp_1
].used
||
1619 (brp_list
[brp_1
].type
!= BRP_CONTEXT
)) && (brp_1
< cortex_a
->brp_num
))
1622 printf("brp(CTX) found num: %d\n", brp_1
);
1623 if (brp_1
>= cortex_a
->brp_num
) {
1624 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1628 while ((brp_list
[brp_2
].used
||
1629 (brp_list
[brp_2
].type
!= BRP_NORMAL
)) && (brp_2
< cortex_a
->brp_num
))
1632 printf("brp(IVA) found num: %d\n", brp_2
);
1633 if (brp_2
>= cortex_a
->brp_num
) {
1634 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1638 breakpoint
->set
= brp_1
+ 1;
1639 breakpoint
->linked_BRP
= brp_2
;
1640 control_CTX
= ((CTX_machmode
& 0x7) << 20)
1643 | (CTX_byte_addr_select
<< 5)
1645 brp_list
[brp_1
].used
= 1;
1646 brp_list
[brp_1
].value
= (breakpoint
->asid
);
1647 brp_list
[brp_1
].control
= control_CTX
;
1648 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1649 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_1
].BRPn
,
1650 brp_list
[brp_1
].value
);
1651 if (retval
!= ERROR_OK
)
1653 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1654 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_1
].BRPn
,
1655 brp_list
[brp_1
].control
);
1656 if (retval
!= ERROR_OK
)
1659 control_IVA
= ((IVA_machmode
& 0x7) << 20)
1661 | (IVA_byte_addr_select
<< 5)
1663 brp_list
[brp_2
].used
= 1;
1664 brp_list
[brp_2
].value
= (breakpoint
->address
& 0xFFFFFFFC);
1665 brp_list
[brp_2
].control
= control_IVA
;
1666 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1667 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_2
].BRPn
,
1668 brp_list
[brp_2
].value
);
1669 if (retval
!= ERROR_OK
)
1671 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1672 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_2
].BRPn
,
1673 brp_list
[brp_2
].control
);
1674 if (retval
!= ERROR_OK
)
1680 static int cortex_a_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1683 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1684 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1685 struct cortex_a_brp
*brp_list
= cortex_a
->brp_list
;
1687 if (!breakpoint
->set
) {
1688 LOG_WARNING("breakpoint not set");
1692 if (breakpoint
->type
== BKPT_HARD
) {
1693 if ((breakpoint
->address
!= 0) && (breakpoint
->asid
!= 0)) {
1694 int brp_i
= breakpoint
->set
- 1;
1695 int brp_j
= breakpoint
->linked_BRP
;
1696 if ((brp_i
< 0) || (brp_i
>= cortex_a
->brp_num
)) {
1697 LOG_DEBUG("Invalid BRP number in breakpoint");
1700 LOG_DEBUG("rbp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1701 brp_list
[brp_i
].control
, brp_list
[brp_i
].value
);
1702 brp_list
[brp_i
].used
= 0;
1703 brp_list
[brp_i
].value
= 0;
1704 brp_list
[brp_i
].control
= 0;
1705 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1706 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1707 brp_list
[brp_i
].control
);
1708 if (retval
!= ERROR_OK
)
1710 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1711 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1712 brp_list
[brp_i
].value
);
1713 if (retval
!= ERROR_OK
)
1715 if ((brp_j
< 0) || (brp_j
>= cortex_a
->brp_num
)) {
1716 LOG_DEBUG("Invalid BRP number in breakpoint");
1719 LOG_DEBUG("rbp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_j
,
1720 brp_list
[brp_j
].control
, brp_list
[brp_j
].value
);
1721 brp_list
[brp_j
].used
= 0;
1722 brp_list
[brp_j
].value
= 0;
1723 brp_list
[brp_j
].control
= 0;
1724 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1725 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_j
].BRPn
,
1726 brp_list
[brp_j
].control
);
1727 if (retval
!= ERROR_OK
)
1729 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1730 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_j
].BRPn
,
1731 brp_list
[brp_j
].value
);
1732 if (retval
!= ERROR_OK
)
1734 breakpoint
->linked_BRP
= 0;
1735 breakpoint
->set
= 0;
1739 int brp_i
= breakpoint
->set
- 1;
1740 if ((brp_i
< 0) || (brp_i
>= cortex_a
->brp_num
)) {
1741 LOG_DEBUG("Invalid BRP number in breakpoint");
1744 LOG_DEBUG("rbp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1745 brp_list
[brp_i
].control
, brp_list
[brp_i
].value
);
1746 brp_list
[brp_i
].used
= 0;
1747 brp_list
[brp_i
].value
= 0;
1748 brp_list
[brp_i
].control
= 0;
1749 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1750 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1751 brp_list
[brp_i
].control
);
1752 if (retval
!= ERROR_OK
)
1754 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1755 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1756 brp_list
[brp_i
].value
);
1757 if (retval
!= ERROR_OK
)
1759 breakpoint
->set
= 0;
1764 /* make sure data cache is cleaned & invalidated down to PoC */
1765 if (!armv7a
->armv7a_mmu
.armv7a_cache
.auto_cache_enabled
) {
1766 armv7a_cache_flush_virt(target
, breakpoint
->address
,
1767 breakpoint
->length
);
1770 /* restore original instruction (kept in target endianness) */
1771 if (breakpoint
->length
== 4) {
1772 retval
= target_write_memory(target
,
1773 breakpoint
->address
& 0xFFFFFFFE,
1774 4, 1, breakpoint
->orig_instr
);
1775 if (retval
!= ERROR_OK
)
1778 retval
= target_write_memory(target
,
1779 breakpoint
->address
& 0xFFFFFFFE,
1780 2, 1, breakpoint
->orig_instr
);
1781 if (retval
!= ERROR_OK
)
1785 /* update i-cache at breakpoint location */
1786 armv7a_l1_d_cache_inval_virt(target
, breakpoint
->address
,
1787 breakpoint
->length
);
1788 armv7a_l1_i_cache_inval_virt(target
, breakpoint
->address
,
1789 breakpoint
->length
);
1791 breakpoint
->set
= 0;
1796 static int cortex_a_add_breakpoint(struct target
*target
,
1797 struct breakpoint
*breakpoint
)
1799 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1801 if ((breakpoint
->type
== BKPT_HARD
) && (cortex_a
->brp_num_available
< 1)) {
1802 LOG_INFO("no hardware breakpoint available");
1803 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1806 if (breakpoint
->type
== BKPT_HARD
)
1807 cortex_a
->brp_num_available
--;
1809 return cortex_a_set_breakpoint(target
, breakpoint
, 0x00); /* Exact match */
1812 static int cortex_a_add_context_breakpoint(struct target
*target
,
1813 struct breakpoint
*breakpoint
)
1815 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1817 if ((breakpoint
->type
== BKPT_HARD
) && (cortex_a
->brp_num_available
< 1)) {
1818 LOG_INFO("no hardware breakpoint available");
1819 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1822 if (breakpoint
->type
== BKPT_HARD
)
1823 cortex_a
->brp_num_available
--;
1825 return cortex_a_set_context_breakpoint(target
, breakpoint
, 0x02); /* asid match */
1828 static int cortex_a_add_hybrid_breakpoint(struct target
*target
,
1829 struct breakpoint
*breakpoint
)
1831 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1833 if ((breakpoint
->type
== BKPT_HARD
) && (cortex_a
->brp_num_available
< 1)) {
1834 LOG_INFO("no hardware breakpoint available");
1835 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1838 if (breakpoint
->type
== BKPT_HARD
)
1839 cortex_a
->brp_num_available
--;
1841 return cortex_a_set_hybrid_breakpoint(target
, breakpoint
); /* ??? */
1845 static int cortex_a_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1847 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1850 /* It is perfectly possible to remove breakpoints while the target is running */
1851 if (target
->state
!= TARGET_HALTED
) {
1852 LOG_WARNING("target not halted");
1853 return ERROR_TARGET_NOT_HALTED
;
1857 if (breakpoint
->set
) {
1858 cortex_a_unset_breakpoint(target
, breakpoint
);
1859 if (breakpoint
->type
== BKPT_HARD
)
1860 cortex_a
->brp_num_available
++;
1868 * Cortex-A Reset functions
1871 static int cortex_a_assert_reset(struct target
*target
)
1873 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1877 /* FIXME when halt is requested, make it work somehow... */
1879 /* This function can be called in "target not examined" state */
1881 /* Issue some kind of warm reset. */
1882 if (target_has_event_action(target
, TARGET_EVENT_RESET_ASSERT
))
1883 target_handle_event(target
, TARGET_EVENT_RESET_ASSERT
);
1884 else if (jtag_get_reset_config() & RESET_HAS_SRST
) {
1885 /* REVISIT handle "pulls" cases, if there's
1886 * hardware that needs them to work.
1890 * FIXME: fix reset when transport is SWD. This is a temporary
1891 * work-around for release v0.10 that is not intended to stay!
1893 if (transport_is_swd() ||
1894 (target
->reset_halt
&& (jtag_get_reset_config() & RESET_SRST_NO_GATING
)))
1895 jtag_add_reset(0, 1);
1898 LOG_ERROR("%s: how to reset?", target_name(target
));
1902 /* registers are now invalid */
1903 if (target_was_examined(target
))
1904 register_cache_invalidate(armv7a
->arm
.core_cache
);
1906 target
->state
= TARGET_RESET
;
1911 static int cortex_a_deassert_reset(struct target
*target
)
1917 /* be certain SRST is off */
1918 jtag_add_reset(0, 0);
1920 if (target_was_examined(target
)) {
1921 retval
= cortex_a_poll(target
);
1922 if (retval
!= ERROR_OK
)
1926 if (target
->reset_halt
) {
1927 if (target
->state
!= TARGET_HALTED
) {
1928 LOG_WARNING("%s: ran after reset and before halt ...",
1929 target_name(target
));
1930 if (target_was_examined(target
)) {
1931 retval
= target_halt(target
);
1932 if (retval
!= ERROR_OK
)
1935 target
->state
= TARGET_UNKNOWN
;
1942 static int cortex_a_set_dcc_mode(struct target
*target
, uint32_t mode
, uint32_t *dscr
)
1944 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1945 * New desired mode must be in mode. Current value of DSCR must be in
1946 * *dscr, which is updated with new value.
1948 * This function elides actually sending the mode-change over the debug
1949 * interface if the mode is already set as desired.
1951 uint32_t new_dscr
= (*dscr
& ~DSCR_EXT_DCC_MASK
) | mode
;
1952 if (new_dscr
!= *dscr
) {
1953 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1954 int retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1955 armv7a
->debug_base
+ CPUDBG_DSCR
, new_dscr
);
1956 if (retval
== ERROR_OK
)
1964 static int cortex_a_wait_dscr_bits(struct target
*target
, uint32_t mask
,
1965 uint32_t value
, uint32_t *dscr
)
1967 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1968 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1969 int64_t then
= timeval_ms();
1972 while ((*dscr
& mask
) != value
) {
1973 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1974 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
1975 if (retval
!= ERROR_OK
)
1977 if (timeval_ms() > then
+ 1000) {
1978 LOG_ERROR("timeout waiting for DSCR bit change");
1985 static int cortex_a_read_copro(struct target
*target
, uint32_t opcode
,
1986 uint32_t *data
, uint32_t *dscr
)
1989 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1991 /* Move from coprocessor to R0. */
1992 retval
= cortex_a_exec_opcode(target
, opcode
, dscr
);
1993 if (retval
!= ERROR_OK
)
1996 /* Move from R0 to DTRTX. */
1997 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr
);
1998 if (retval
!= ERROR_OK
)
2001 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2002 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2003 * must also check TXfull_l). Most of the time this will be free
2004 * because TXfull_l will be set immediately and cached in dscr. */
2005 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRTX_FULL_LATCHED
,
2006 DSCR_DTRTX_FULL_LATCHED
, dscr
);
2007 if (retval
!= ERROR_OK
)
2010 /* Read the value transferred to DTRTX. */
2011 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2012 armv7a
->debug_base
+ CPUDBG_DTRTX
, data
);
2013 if (retval
!= ERROR_OK
)
2019 static int cortex_a_read_dfar_dfsr(struct target
*target
, uint32_t *dfar
,
2020 uint32_t *dfsr
, uint32_t *dscr
)
2025 retval
= cortex_a_read_copro(target
, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar
, dscr
);
2026 if (retval
!= ERROR_OK
)
2031 retval
= cortex_a_read_copro(target
, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr
, dscr
);
2032 if (retval
!= ERROR_OK
)
2039 static int cortex_a_write_copro(struct target
*target
, uint32_t opcode
,
2040 uint32_t data
, uint32_t *dscr
)
2043 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2045 /* Write the value into DTRRX. */
2046 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2047 armv7a
->debug_base
+ CPUDBG_DTRRX
, data
);
2048 if (retval
!= ERROR_OK
)
2051 /* Move from DTRRX to R0. */
2052 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr
);
2053 if (retval
!= ERROR_OK
)
2056 /* Move from R0 to coprocessor. */
2057 retval
= cortex_a_exec_opcode(target
, opcode
, dscr
);
2058 if (retval
!= ERROR_OK
)
2061 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2062 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2063 * check RXfull_l). Most of the time this will be free because RXfull_l
2064 * will be cleared immediately and cached in dscr. */
2065 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRRX_FULL_LATCHED
, 0, dscr
);
2066 if (retval
!= ERROR_OK
)
2072 static int cortex_a_write_dfar_dfsr(struct target
*target
, uint32_t dfar
,
2073 uint32_t dfsr
, uint32_t *dscr
)
2077 retval
= cortex_a_write_copro(target
, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar
, dscr
);
2078 if (retval
!= ERROR_OK
)
2081 retval
= cortex_a_write_copro(target
, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr
, dscr
);
2082 if (retval
!= ERROR_OK
)
2088 static int cortex_a_dfsr_to_error_code(uint32_t dfsr
)
2090 uint32_t status
, upper4
;
2092 if (dfsr
& (1 << 9)) {
2094 status
= dfsr
& 0x3f;
2095 upper4
= status
>> 2;
2096 if (upper4
== 1 || upper4
== 2 || upper4
== 3 || upper4
== 15)
2097 return ERROR_TARGET_TRANSLATION_FAULT
;
2098 else if (status
== 33)
2099 return ERROR_TARGET_UNALIGNED_ACCESS
;
2101 return ERROR_TARGET_DATA_ABORT
;
2103 /* Normal format. */
2104 status
= ((dfsr
>> 6) & 0x10) | (dfsr
& 0xf);
2106 return ERROR_TARGET_UNALIGNED_ACCESS
;
2107 else if (status
== 5 || status
== 7 || status
== 3 || status
== 6 ||
2108 status
== 9 || status
== 11 || status
== 13 || status
== 15)
2109 return ERROR_TARGET_TRANSLATION_FAULT
;
2111 return ERROR_TARGET_DATA_ABORT
;
2115 static int cortex_a_write_cpu_memory_slow(struct target
*target
,
2116 uint32_t size
, uint32_t count
, const uint8_t *buffer
, uint32_t *dscr
)
2118 /* Writes count objects of size size from *buffer. Old value of DSCR must
2119 * be in *dscr; updated to new value. This is slow because it works for
2120 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2121 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2124 * - Address is in R0.
2125 * - R0 is marked dirty.
2127 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2128 struct arm
*arm
= &armv7a
->arm
;
2131 /* Mark register R1 as dirty, to use for transferring data. */
2132 arm_reg_current(arm
, 1)->dirty
= true;
2134 /* Switch to non-blocking mode if not already in that mode. */
2135 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, dscr
);
2136 if (retval
!= ERROR_OK
)
2139 /* Go through the objects. */
2141 /* Write the value to store into DTRRX. */
2142 uint32_t data
, opcode
;
2146 data
= target_buffer_get_u16(target
, buffer
);
2148 data
= target_buffer_get_u32(target
, buffer
);
2149 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2150 armv7a
->debug_base
+ CPUDBG_DTRRX
, data
);
2151 if (retval
!= ERROR_OK
)
2154 /* Transfer the value from DTRRX to R1. */
2155 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr
);
2156 if (retval
!= ERROR_OK
)
2159 /* Write the value transferred to R1 into memory. */
2161 opcode
= ARMV4_5_STRB_IP(1, 0);
2163 opcode
= ARMV4_5_STRH_IP(1, 0);
2165 opcode
= ARMV4_5_STRW_IP(1, 0);
2166 retval
= cortex_a_exec_opcode(target
, opcode
, dscr
);
2167 if (retval
!= ERROR_OK
)
2170 /* Check for faults and return early. */
2171 if (*dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
))
2172 return ERROR_OK
; /* A data fault is not considered a system failure. */
2174 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2175 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2176 * must also check RXfull_l). Most of the time this will be free
2177 * because RXfull_l will be cleared immediately and cached in dscr. */
2178 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRRX_FULL_LATCHED
, 0, dscr
);
2179 if (retval
!= ERROR_OK
)
2190 static int cortex_a_write_cpu_memory_fast(struct target
*target
,
2191 uint32_t count
, const uint8_t *buffer
, uint32_t *dscr
)
2193 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2194 * in *dscr; updated to new value. This is fast but only works for
2195 * word-sized objects at aligned addresses.
2197 * - Address is in R0 and must be a multiple of 4.
2198 * - R0 is marked dirty.
2200 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2203 /* Switch to fast mode if not already in that mode. */
2204 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_FAST_MODE
, dscr
);
2205 if (retval
!= ERROR_OK
)
2208 /* Latch STC instruction. */
2209 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2210 armv7a
->debug_base
+ CPUDBG_ITR
, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2211 if (retval
!= ERROR_OK
)
2214 /* Transfer all the data and issue all the instructions. */
2215 return mem_ap_write_buf_noincr(armv7a
->debug_ap
, buffer
,
2216 4, count
, armv7a
->debug_base
+ CPUDBG_DTRRX
);
2219 static int cortex_a_write_cpu_memory(struct target
*target
,
2220 uint32_t address
, uint32_t size
,
2221 uint32_t count
, const uint8_t *buffer
)
2223 /* Write memory through the CPU. */
2224 int retval
, final_retval
;
2225 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2226 struct arm
*arm
= &armv7a
->arm
;
2227 uint32_t dscr
, orig_dfar
, orig_dfsr
, fault_dscr
, fault_dfar
, fault_dfsr
;
2229 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32
" size %" PRIu32
" count %" PRIu32
,
2230 address
, size
, count
);
2231 if (target
->state
!= TARGET_HALTED
) {
2232 LOG_WARNING("target not halted");
2233 return ERROR_TARGET_NOT_HALTED
;
2239 /* Clear any abort. */
2240 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2241 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_CLEAR_EXCEPTIONS
);
2242 if (retval
!= ERROR_OK
)
2246 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2247 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
2248 if (retval
!= ERROR_OK
)
2251 /* Switch to non-blocking mode if not already in that mode. */
2252 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, &dscr
);
2253 if (retval
!= ERROR_OK
)
2256 /* Mark R0 as dirty. */
2257 arm_reg_current(arm
, 0)->dirty
= true;
2259 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2260 retval
= cortex_a_read_dfar_dfsr(target
, &orig_dfar
, &orig_dfsr
, &dscr
);
2261 if (retval
!= ERROR_OK
)
2264 /* Get the memory address into R0. */
2265 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2266 armv7a
->debug_base
+ CPUDBG_DTRRX
, address
);
2267 if (retval
!= ERROR_OK
)
2269 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr
);
2270 if (retval
!= ERROR_OK
)
2273 if (size
== 4 && (address
% 4) == 0) {
2274 /* We are doing a word-aligned transfer, so use fast mode. */
2275 retval
= cortex_a_write_cpu_memory_fast(target
, count
, buffer
, &dscr
);
2277 /* Use slow path. */
2278 retval
= cortex_a_write_cpu_memory_slow(target
, size
, count
, buffer
, &dscr
);
2282 final_retval
= retval
;
2284 /* Switch to non-blocking mode if not already in that mode. */
2285 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, &dscr
);
2286 if (final_retval
== ERROR_OK
)
2287 final_retval
= retval
;
2289 /* Wait for last issued instruction to complete. */
2290 retval
= cortex_a_wait_instrcmpl(target
, &dscr
, true);
2291 if (final_retval
== ERROR_OK
)
2292 final_retval
= retval
;
2294 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2295 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2296 * check RXfull_l). Most of the time this will be free because RXfull_l
2297 * will be cleared immediately and cached in dscr. However, don't do this
2298 * if there is fault, because then the instruction might not have completed
2300 if (!(dscr
& DSCR_STICKY_ABORT_PRECISE
)) {
2301 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRRX_FULL_LATCHED
, 0, &dscr
);
2302 if (retval
!= ERROR_OK
)
2306 /* If there were any sticky abort flags, clear them. */
2307 if (dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
)) {
2309 mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2310 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_CLEAR_EXCEPTIONS
);
2311 dscr
&= ~(DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
);
2316 /* Handle synchronous data faults. */
2317 if (fault_dscr
& DSCR_STICKY_ABORT_PRECISE
) {
2318 if (final_retval
== ERROR_OK
) {
2319 /* Final return value will reflect cause of fault. */
2320 retval
= cortex_a_read_dfar_dfsr(target
, &fault_dfar
, &fault_dfsr
, &dscr
);
2321 if (retval
== ERROR_OK
) {
2322 LOG_ERROR("data abort at 0x%08" PRIx32
", dfsr = 0x%08" PRIx32
, fault_dfar
, fault_dfsr
);
2323 final_retval
= cortex_a_dfsr_to_error_code(fault_dfsr
);
2325 final_retval
= retval
;
2327 /* Fault destroyed DFAR/DFSR; restore them. */
2328 retval
= cortex_a_write_dfar_dfsr(target
, orig_dfar
, orig_dfsr
, &dscr
);
2329 if (retval
!= ERROR_OK
)
2330 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32
, dscr
);
2333 /* Handle asynchronous data faults. */
2334 if (fault_dscr
& DSCR_STICKY_ABORT_IMPRECISE
) {
2335 if (final_retval
== ERROR_OK
)
2336 /* No other error has been recorded so far, so keep this one. */
2337 final_retval
= ERROR_TARGET_DATA_ABORT
;
2340 /* If the DCC is nonempty, clear it. */
2341 if (dscr
& DSCR_DTRTX_FULL_LATCHED
) {
2343 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2344 armv7a
->debug_base
+ CPUDBG_DTRTX
, &dummy
);
2345 if (final_retval
== ERROR_OK
)
2346 final_retval
= retval
;
2348 if (dscr
& DSCR_DTRRX_FULL_LATCHED
) {
2349 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr
);
2350 if (final_retval
== ERROR_OK
)
2351 final_retval
= retval
;
2355 return final_retval
;
2358 static int cortex_a_read_cpu_memory_slow(struct target
*target
,
2359 uint32_t size
, uint32_t count
, uint8_t *buffer
, uint32_t *dscr
)
2361 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2362 * in *dscr; updated to new value. This is slow because it works for
2363 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2364 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2367 * - Address is in R0.
2368 * - R0 is marked dirty.
2370 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2371 struct arm
*arm
= &armv7a
->arm
;
2374 /* Mark register R1 as dirty, to use for transferring data. */
2375 arm_reg_current(arm
, 1)->dirty
= true;
2377 /* Switch to non-blocking mode if not already in that mode. */
2378 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, dscr
);
2379 if (retval
!= ERROR_OK
)
2382 /* Go through the objects. */
2384 /* Issue a load of the appropriate size to R1. */
2385 uint32_t opcode
, data
;
2387 opcode
= ARMV4_5_LDRB_IP(1, 0);
2389 opcode
= ARMV4_5_LDRH_IP(1, 0);
2391 opcode
= ARMV4_5_LDRW_IP(1, 0);
2392 retval
= cortex_a_exec_opcode(target
, opcode
, dscr
);
2393 if (retval
!= ERROR_OK
)
2396 /* Issue a write of R1 to DTRTX. */
2397 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr
);
2398 if (retval
!= ERROR_OK
)
2401 /* Check for faults and return early. */
2402 if (*dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
))
2403 return ERROR_OK
; /* A data fault is not considered a system failure. */
2405 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2406 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2407 * must also check TXfull_l). Most of the time this will be free
2408 * because TXfull_l will be set immediately and cached in dscr. */
2409 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRTX_FULL_LATCHED
,
2410 DSCR_DTRTX_FULL_LATCHED
, dscr
);
2411 if (retval
!= ERROR_OK
)
2414 /* Read the value transferred to DTRTX into the buffer. */
2415 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2416 armv7a
->debug_base
+ CPUDBG_DTRTX
, &data
);
2417 if (retval
!= ERROR_OK
)
2420 *buffer
= (uint8_t) data
;
2422 target_buffer_set_u16(target
, buffer
, (uint16_t) data
);
2424 target_buffer_set_u32(target
, buffer
, data
);
2434 static int cortex_a_read_cpu_memory_fast(struct target
*target
,
2435 uint32_t count
, uint8_t *buffer
, uint32_t *dscr
)
2437 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2438 * *dscr; updated to new value. This is fast but only works for word-sized
2439 * objects at aligned addresses.
2441 * - Address is in R0 and must be a multiple of 4.
2442 * - R0 is marked dirty.
2444 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2448 /* Switch to non-blocking mode if not already in that mode. */
2449 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, dscr
);
2450 if (retval
!= ERROR_OK
)
2453 /* Issue the LDC instruction via a write to ITR. */
2454 retval
= cortex_a_exec_opcode(target
, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr
);
2455 if (retval
!= ERROR_OK
)
2461 /* Switch to fast mode if not already in that mode. */
2462 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_FAST_MODE
, dscr
);
2463 if (retval
!= ERROR_OK
)
2466 /* Latch LDC instruction. */
2467 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2468 armv7a
->debug_base
+ CPUDBG_ITR
, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2469 if (retval
!= ERROR_OK
)
2472 /* Read the value transferred to DTRTX into the buffer. Due to fast
2473 * mode rules, this blocks until the instruction finishes executing and
2474 * then reissues the read instruction to read the next word from
2475 * memory. The last read of DTRTX in this call reads the second-to-last
2476 * word from memory and issues the read instruction for the last word.
2478 retval
= mem_ap_read_buf_noincr(armv7a
->debug_ap
, buffer
,
2479 4, count
, armv7a
->debug_base
+ CPUDBG_DTRTX
);
2480 if (retval
!= ERROR_OK
)
2484 buffer
+= count
* 4;
2487 /* Wait for last issued instruction to complete. */
2488 retval
= cortex_a_wait_instrcmpl(target
, dscr
, false);
2489 if (retval
!= ERROR_OK
)
2492 /* Switch to non-blocking mode if not already in that mode. */
2493 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, dscr
);
2494 if (retval
!= ERROR_OK
)
2497 /* Check for faults and return early. */
2498 if (*dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
))
2499 return ERROR_OK
; /* A data fault is not considered a system failure. */
2501 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2502 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2503 * check TXfull_l). Most of the time this will be free because TXfull_l
2504 * will be set immediately and cached in dscr. */
2505 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRTX_FULL_LATCHED
,
2506 DSCR_DTRTX_FULL_LATCHED
, dscr
);
2507 if (retval
!= ERROR_OK
)
2510 /* Read the value transferred to DTRTX into the buffer. This is the last
2512 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2513 armv7a
->debug_base
+ CPUDBG_DTRTX
, &u32
);
2514 if (retval
!= ERROR_OK
)
2516 target_buffer_set_u32(target
, buffer
, u32
);
2521 static int cortex_a_read_cpu_memory(struct target
*target
,
2522 uint32_t address
, uint32_t size
,
2523 uint32_t count
, uint8_t *buffer
)
2525 /* Read memory through the CPU. */
2526 int retval
, final_retval
;
2527 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2528 struct arm
*arm
= &armv7a
->arm
;
2529 uint32_t dscr
, orig_dfar
, orig_dfsr
, fault_dscr
, fault_dfar
, fault_dfsr
;
2531 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32
" size %" PRIu32
" count %" PRIu32
,
2532 address
, size
, count
);
2533 if (target
->state
!= TARGET_HALTED
) {
2534 LOG_WARNING("target not halted");
2535 return ERROR_TARGET_NOT_HALTED
;
2541 /* Clear any abort. */
2542 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2543 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_CLEAR_EXCEPTIONS
);
2544 if (retval
!= ERROR_OK
)
2548 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2549 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
2550 if (retval
!= ERROR_OK
)
2553 /* Switch to non-blocking mode if not already in that mode. */
2554 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, &dscr
);
2555 if (retval
!= ERROR_OK
)
2558 /* Mark R0 as dirty. */
2559 arm_reg_current(arm
, 0)->dirty
= true;
2561 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2562 retval
= cortex_a_read_dfar_dfsr(target
, &orig_dfar
, &orig_dfsr
, &dscr
);
2563 if (retval
!= ERROR_OK
)
2566 /* Get the memory address into R0. */
2567 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2568 armv7a
->debug_base
+ CPUDBG_DTRRX
, address
);
2569 if (retval
!= ERROR_OK
)
2571 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr
);
2572 if (retval
!= ERROR_OK
)
2575 if (size
== 4 && (address
% 4) == 0) {
2576 /* We are doing a word-aligned transfer, so use fast mode. */
2577 retval
= cortex_a_read_cpu_memory_fast(target
, count
, buffer
, &dscr
);
2579 /* Use slow path. */
2580 retval
= cortex_a_read_cpu_memory_slow(target
, size
, count
, buffer
, &dscr
);
2584 final_retval
= retval
;
2586 /* Switch to non-blocking mode if not already in that mode. */
2587 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, &dscr
);
2588 if (final_retval
== ERROR_OK
)
2589 final_retval
= retval
;
2591 /* Wait for last issued instruction to complete. */
2592 retval
= cortex_a_wait_instrcmpl(target
, &dscr
, true);
2593 if (final_retval
== ERROR_OK
)
2594 final_retval
= retval
;
2596 /* If there were any sticky abort flags, clear them. */
2597 if (dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
)) {
2599 mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2600 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_CLEAR_EXCEPTIONS
);
2601 dscr
&= ~(DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
);
2606 /* Handle synchronous data faults. */
2607 if (fault_dscr
& DSCR_STICKY_ABORT_PRECISE
) {
2608 if (final_retval
== ERROR_OK
) {
2609 /* Final return value will reflect cause of fault. */
2610 retval
= cortex_a_read_dfar_dfsr(target
, &fault_dfar
, &fault_dfsr
, &dscr
);
2611 if (retval
== ERROR_OK
) {
2612 LOG_ERROR("data abort at 0x%08" PRIx32
", dfsr = 0x%08" PRIx32
, fault_dfar
, fault_dfsr
);
2613 final_retval
= cortex_a_dfsr_to_error_code(fault_dfsr
);
2615 final_retval
= retval
;
2617 /* Fault destroyed DFAR/DFSR; restore them. */
2618 retval
= cortex_a_write_dfar_dfsr(target
, orig_dfar
, orig_dfsr
, &dscr
);
2619 if (retval
!= ERROR_OK
)
2620 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32
, dscr
);
2623 /* Handle asynchronous data faults. */
2624 if (fault_dscr
& DSCR_STICKY_ABORT_IMPRECISE
) {
2625 if (final_retval
== ERROR_OK
)
2626 /* No other error has been recorded so far, so keep this one. */
2627 final_retval
= ERROR_TARGET_DATA_ABORT
;
2630 /* If the DCC is nonempty, clear it. */
2631 if (dscr
& DSCR_DTRTX_FULL_LATCHED
) {
2633 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2634 armv7a
->debug_base
+ CPUDBG_DTRTX
, &dummy
);
2635 if (final_retval
== ERROR_OK
)
2636 final_retval
= retval
;
2638 if (dscr
& DSCR_DTRRX_FULL_LATCHED
) {
2639 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr
);
2640 if (final_retval
== ERROR_OK
)
2641 final_retval
= retval
;
2645 return final_retval
;
2650 * Cortex-A Memory access
2652 * This is same Cortex-M3 but we must also use the correct
2653 * ap number for every access.
2656 static int cortex_a_read_phys_memory(struct target
*target
,
2657 target_addr_t address
, uint32_t size
,
2658 uint32_t count
, uint8_t *buffer
)
2660 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2661 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2662 uint8_t apsel
= swjdp
->apsel
;
2665 if (!count
|| !buffer
)
2666 return ERROR_COMMAND_SYNTAX_ERROR
;
2668 LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2669 address
, size
, count
);
2671 if (armv7a
->memory_ap_available
&& (apsel
== armv7a
->memory_ap
->ap_num
))
2672 return mem_ap_read_buf(armv7a
->memory_ap
, buffer
, size
, count
, address
);
2674 /* read memory through the CPU */
2675 cortex_a_prep_memaccess(target
, 1);
2676 retval
= cortex_a_read_cpu_memory(target
, address
, size
, count
, buffer
);
2677 cortex_a_post_memaccess(target
, 1);
2682 static int cortex_a_read_memory(struct target
*target
, target_addr_t address
,
2683 uint32_t size
, uint32_t count
, uint8_t *buffer
)
2687 /* cortex_a handles unaligned memory access */
2688 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2689 address
, size
, count
);
2691 cortex_a_prep_memaccess(target
, 0);
2692 retval
= cortex_a_read_cpu_memory(target
, address
, size
, count
, buffer
);
2693 cortex_a_post_memaccess(target
, 0);
2698 static int cortex_a_read_memory_ahb(struct target
*target
, target_addr_t address
,
2699 uint32_t size
, uint32_t count
, uint8_t *buffer
)
2701 int mmu_enabled
= 0;
2702 target_addr_t virt
, phys
;
2704 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2705 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2706 uint8_t apsel
= swjdp
->apsel
;
2708 if (!armv7a
->memory_ap_available
|| (apsel
!= armv7a
->memory_ap
->ap_num
))
2709 return target_read_memory(target
, address
, size
, count
, buffer
);
2711 /* cortex_a handles unaligned memory access */
2712 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2713 address
, size
, count
);
2715 /* determine if MMU was enabled on target stop */
2716 if (!armv7a
->is_armv7r
) {
2717 retval
= cortex_a_mmu(target
, &mmu_enabled
);
2718 if (retval
!= ERROR_OK
)
2724 retval
= cortex_a_virt2phys(target
, virt
, &phys
);
2725 if (retval
!= ERROR_OK
)
2728 LOG_DEBUG("Reading at virtual address. "
2729 "Translating v:" TARGET_ADDR_FMT
" to r:" TARGET_ADDR_FMT
,
2734 if (!count
|| !buffer
)
2735 return ERROR_COMMAND_SYNTAX_ERROR
;
2737 retval
= mem_ap_read_buf(armv7a
->memory_ap
, buffer
, size
, count
, address
);
2742 static int cortex_a_write_phys_memory(struct target
*target
,
2743 target_addr_t address
, uint32_t size
,
2744 uint32_t count
, const uint8_t *buffer
)
2746 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2747 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2748 uint8_t apsel
= swjdp
->apsel
;
2751 if (!count
|| !buffer
)
2752 return ERROR_COMMAND_SYNTAX_ERROR
;
2754 LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2755 address
, size
, count
);
2757 if (armv7a
->memory_ap_available
&& (apsel
== armv7a
->memory_ap
->ap_num
))
2758 return mem_ap_write_buf(armv7a
->memory_ap
, buffer
, size
, count
, address
);
2760 /* write memory through the CPU */
2761 cortex_a_prep_memaccess(target
, 1);
2762 retval
= cortex_a_write_cpu_memory(target
, address
, size
, count
, buffer
);
2763 cortex_a_post_memaccess(target
, 1);
2768 static int cortex_a_write_memory(struct target
*target
, target_addr_t address
,
2769 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
2773 /* cortex_a handles unaligned memory access */
2774 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2775 address
, size
, count
);
2777 /* memory writes bypass the caches, must flush before writing */
2778 armv7a_cache_auto_flush_on_write(target
, address
, size
* count
);
2780 cortex_a_prep_memaccess(target
, 0);
2781 retval
= cortex_a_write_cpu_memory(target
, address
, size
, count
, buffer
);
2782 cortex_a_post_memaccess(target
, 0);
2786 static int cortex_a_write_memory_ahb(struct target
*target
, target_addr_t address
,
2787 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
2789 int mmu_enabled
= 0;
2790 target_addr_t virt
, phys
;
2792 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2793 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2794 uint8_t apsel
= swjdp
->apsel
;
2796 if (!armv7a
->memory_ap_available
|| (apsel
!= armv7a
->memory_ap
->ap_num
))
2797 return target_write_memory(target
, address
, size
, count
, buffer
);
2799 /* cortex_a handles unaligned memory access */
2800 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2801 address
, size
, count
);
2803 /* determine if MMU was enabled on target stop */
2804 if (!armv7a
->is_armv7r
) {
2805 retval
= cortex_a_mmu(target
, &mmu_enabled
);
2806 if (retval
!= ERROR_OK
)
2812 retval
= cortex_a_virt2phys(target
, virt
, &phys
);
2813 if (retval
!= ERROR_OK
)
2816 LOG_DEBUG("Writing to virtual address. "
2817 "Translating v:" TARGET_ADDR_FMT
" to r:" TARGET_ADDR_FMT
,
2823 if (!count
|| !buffer
)
2824 return ERROR_COMMAND_SYNTAX_ERROR
;
2826 retval
= mem_ap_write_buf(armv7a
->memory_ap
, buffer
, size
, count
, address
);
2831 static int cortex_a_read_buffer(struct target
*target
, target_addr_t address
,
2832 uint32_t count
, uint8_t *buffer
)
2836 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2837 * will have something to do with the size we leave to it. */
2838 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2839 if (address
& size
) {
2840 int retval
= cortex_a_read_memory_ahb(target
, address
, size
, 1, buffer
);
2841 if (retval
!= ERROR_OK
)
2849 /* Read the data with as large access size as possible. */
2850 for (; size
> 0; size
/= 2) {
2851 uint32_t aligned
= count
- count
% size
;
2853 int retval
= cortex_a_read_memory_ahb(target
, address
, size
, aligned
/ size
, buffer
);
2854 if (retval
!= ERROR_OK
)
2865 static int cortex_a_write_buffer(struct target
*target
, target_addr_t address
,
2866 uint32_t count
, const uint8_t *buffer
)
2870 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2871 * will have something to do with the size we leave to it. */
2872 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2873 if (address
& size
) {
2874 int retval
= cortex_a_write_memory_ahb(target
, address
, size
, 1, buffer
);
2875 if (retval
!= ERROR_OK
)
2883 /* Write the data with as large access size as possible. */
2884 for (; size
> 0; size
/= 2) {
2885 uint32_t aligned
= count
- count
% size
;
2887 int retval
= cortex_a_write_memory_ahb(target
, address
, size
, aligned
/ size
, buffer
);
2888 if (retval
!= ERROR_OK
)
2899 static int cortex_a_handle_target_request(void *priv
)
2901 struct target
*target
= priv
;
2902 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2905 if (!target_was_examined(target
))
2907 if (!target
->dbg_msg_enabled
)
2910 if (target
->state
== TARGET_RUNNING
) {
2913 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2914 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
2916 /* check if we have data */
2917 int64_t then
= timeval_ms();
2918 while ((dscr
& DSCR_DTR_TX_FULL
) && (retval
== ERROR_OK
)) {
2919 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2920 armv7a
->debug_base
+ CPUDBG_DTRTX
, &request
);
2921 if (retval
== ERROR_OK
) {
2922 target_request(target
, request
);
2923 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2924 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
2926 if (timeval_ms() > then
+ 1000) {
2927 LOG_ERROR("Timeout waiting for dtr tx full");
2937 * Cortex-A target information and configuration
2940 static int cortex_a_examine_first(struct target
*target
)
2942 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
2943 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
2944 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2947 int retval
= ERROR_OK
;
2948 uint32_t didr
, cpuid
, dbg_osreg
;
2950 retval
= dap_dp_init(swjdp
);
2951 if (retval
!= ERROR_OK
) {
2952 LOG_ERROR("Could not initialize the debug port");
2956 /* Search for the APB-AP - it is needed for access to debug registers */
2957 retval
= dap_find_ap(swjdp
, AP_TYPE_APB_AP
, &armv7a
->debug_ap
);
2958 if (retval
!= ERROR_OK
) {
2959 LOG_ERROR("Could not find APB-AP for debug access");
2963 retval
= mem_ap_init(armv7a
->debug_ap
);
2964 if (retval
!= ERROR_OK
) {
2965 LOG_ERROR("Could not initialize the APB-AP");
2969 armv7a
->debug_ap
->memaccess_tck
= 80;
2971 /* Search for the AHB-AB.
2972 * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2973 * can access system memory. */
2974 armv7a
->memory_ap_available
= false;
2975 retval
= dap_find_ap(swjdp
, AP_TYPE_AHB_AP
, &armv7a
->memory_ap
);
2976 if (retval
== ERROR_OK
) {
2977 retval
= mem_ap_init(armv7a
->memory_ap
);
2978 if (retval
== ERROR_OK
)
2979 armv7a
->memory_ap_available
= true;
2981 if (retval
!= ERROR_OK
) {
2982 /* AHB-AP not found or unavailable - use the CPU */
2983 LOG_DEBUG("No AHB-AP available for memory access");
2986 if (!target
->dbgbase_set
) {
2988 /* Get ROM Table base */
2990 int32_t coreidx
= target
->coreid
;
2991 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2993 retval
= dap_get_debugbase(armv7a
->debug_ap
, &dbgbase
, &apid
);
2994 if (retval
!= ERROR_OK
)
2996 /* Lookup 0x15 -- Processor DAP */
2997 retval
= dap_lookup_cs_component(armv7a
->debug_ap
, dbgbase
, 0x15,
2998 &armv7a
->debug_base
, &coreidx
);
2999 if (retval
!= ERROR_OK
) {
3000 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
3004 LOG_DEBUG("Detected core %" PRId32
" dbgbase: %08" PRIx32
,
3005 target
->coreid
, armv7a
->debug_base
);
3007 armv7a
->debug_base
= target
->dbgbase
;
3009 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3010 armv7a
->debug_base
+ CPUDBG_DIDR
, &didr
);
3011 if (retval
!= ERROR_OK
) {
3012 LOG_DEBUG("Examine %s failed", "DIDR");
3016 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3017 armv7a
->debug_base
+ CPUDBG_CPUID
, &cpuid
);
3018 if (retval
!= ERROR_OK
) {
3019 LOG_DEBUG("Examine %s failed", "CPUID");
3023 LOG_DEBUG("didr = 0x%08" PRIx32
, didr
);
3024 LOG_DEBUG("cpuid = 0x%08" PRIx32
, cpuid
);
3026 cortex_a
->didr
= didr
;
3027 cortex_a
->cpuid
= cpuid
;
3029 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3030 armv7a
->debug_base
+ CPUDBG_PRSR
, &dbg_osreg
);
3031 if (retval
!= ERROR_OK
)
3033 LOG_DEBUG("target->coreid %" PRId32
" DBGPRSR 0x%" PRIx32
, target
->coreid
, dbg_osreg
);
3035 if ((dbg_osreg
& PRSR_POWERUP_STATUS
) == 0) {
3036 LOG_ERROR("target->coreid %" PRId32
" powered down!", target
->coreid
);
3037 target
->state
= TARGET_UNKNOWN
; /* TARGET_NO_POWER? */
3038 return ERROR_TARGET_INIT_FAILED
;
3041 if (dbg_osreg
& PRSR_STICKY_RESET_STATUS
)
3042 LOG_DEBUG("target->coreid %" PRId32
" was reset!", target
->coreid
);
3044 /* Read DBGOSLSR and check if OSLK is implemented */
3045 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3046 armv7a
->debug_base
+ CPUDBG_OSLSR
, &dbg_osreg
);
3047 if (retval
!= ERROR_OK
)
3049 LOG_DEBUG("target->coreid %" PRId32
" DBGOSLSR 0x%" PRIx32
, target
->coreid
, dbg_osreg
);
3051 /* check if OS Lock is implemented */
3052 if ((dbg_osreg
& OSLSR_OSLM
) == OSLSR_OSLM0
|| (dbg_osreg
& OSLSR_OSLM
) == OSLSR_OSLM1
) {
3053 /* check if OS Lock is set */
3054 if (dbg_osreg
& OSLSR_OSLK
) {
3055 LOG_DEBUG("target->coreid %" PRId32
" OSLock set! Trying to unlock", target
->coreid
);
3057 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
3058 armv7a
->debug_base
+ CPUDBG_OSLAR
,
3060 if (retval
== ERROR_OK
)
3061 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3062 armv7a
->debug_base
+ CPUDBG_OSLSR
, &dbg_osreg
);
3064 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3065 if (retval
!= ERROR_OK
|| (dbg_osreg
& OSLSR_OSLK
) != 0) {
3066 LOG_ERROR("target->coreid %" PRId32
" OSLock sticky, core not powered?",
3068 target
->state
= TARGET_UNKNOWN
; /* TARGET_NO_POWER? */
3069 return ERROR_TARGET_INIT_FAILED
;
3074 armv7a
->arm
.core_type
= ARM_MODE_MON
;
3076 /* Avoid recreating the registers cache */
3077 if (!target_was_examined(target
)) {
3078 retval
= cortex_a_dpm_setup(cortex_a
, didr
);
3079 if (retval
!= ERROR_OK
)