topic: add reset functions for SWD
[openocd.git] / src / target / cortex_m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 * *
26 * *
27 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
28 * *
29 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
44
45 /* NOTE: most of this should work fine for the Cortex-M1 and
46 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47 * Some differences: M0/M1 doesn't have FBP remapping or the
48 * DWT tracing/profiling support. (So the cycle counter will
49 * not be usable; the other stuff isn't currently used here.)
50 *
51 * Although there are some workarounds for errata seen only in r0p0
52 * silicon, such old parts are hard to find and thus not much tested
53 * any longer.
54 */
55
56 /**
57 * Returns the type of a break point required by address location
58 */
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
60
61
62 /* forward declarations */
63 static int cortex_m3_store_core_reg_u32(struct target *target,
64 enum armv7m_regtype type, uint32_t num, uint32_t value);
65
66 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
67 uint32_t *value, int regnum)
68 {
69 int retval;
70 uint32_t dcrdr;
71
72 /* because the DCB_DCRDR is used for the emulated dcc channel
73 * we have to save/restore the DCB_DCRDR when used */
74
75 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
76 if (retval != ERROR_OK)
77 return retval;
78
79 /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
80 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
81 if (retval != ERROR_OK)
82 return retval;
83 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
84 if (retval != ERROR_OK)
85 return retval;
86
87 /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
88 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
89 if (retval != ERROR_OK)
90 return retval;
91 retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
92 if (retval != ERROR_OK)
93 return retval;
94
95 retval = dap_run(swjdp);
96 if (retval != ERROR_OK)
97 return retval;
98
99 /* restore DCB_DCRDR - this needs to be in a seperate
100 * transaction otherwise the emulated DCC channel breaks */
101 if (retval == ERROR_OK)
102 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
103
104 return retval;
105 }
106
107 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
108 uint32_t value, int regnum)
109 {
110 int retval;
111 uint32_t dcrdr;
112
113 /* because the DCB_DCRDR is used for the emulated dcc channel
114 * we have to save/restore the DCB_DCRDR when used */
115
116 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
117 if (retval != ERROR_OK)
118 return retval;
119
120 /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
121 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
122 if (retval != ERROR_OK)
123 return retval;
124 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
125 if (retval != ERROR_OK)
126 return retval;
127
128 /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
129 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
130 if (retval != ERROR_OK)
131 return retval;
132 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
133 if (retval != ERROR_OK)
134 return retval;
135
136 retval = dap_run(swjdp);
137 if (retval != ERROR_OK)
138 return retval;
139
140 /* restore DCB_DCRDR - this needs to be in a seperate
141 * transaction otherwise the emulated DCC channel breaks */
142 if (retval == ERROR_OK)
143 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
144
145 return retval;
146 }
147
148 static int cortex_m3_write_debug_halt_mask(struct target *target,
149 uint32_t mask_on, uint32_t mask_off)
150 {
151 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
152 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
153
154 /* mask off status bits */
155 cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
156 /* create new register mask */
157 cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
158
159 return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
160 }
161
162 static int cortex_m3_clear_halt(struct target *target)
163 {
164 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
165 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
166 int retval;
167
168 /* clear step if any */
169 cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
170
171 /* Read Debug Fault Status Register */
172 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
173 if (retval != ERROR_OK)
174 return retval;
175
176 /* Clear Debug Fault Status */
177 retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
178 if (retval != ERROR_OK)
179 return retval;
180 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
181
182 return ERROR_OK;
183 }
184
185 static int cortex_m3_single_step_core(struct target *target)
186 {
187 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
189 uint32_t dhcsr_save;
190 int retval;
191
192 /* backup dhcsr reg */
193 dhcsr_save = cortex_m3->dcb_dhcsr;
194
195 /* Mask interrupts before clearing halt, if done already. This avoids
196 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
197 * HALT can put the core into an unknown state.
198 */
199 if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) {
200 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202 if (retval != ERROR_OK)
203 return retval;
204 }
205 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207 if (retval != ERROR_OK)
208 return retval;
209 LOG_DEBUG(" ");
210
211 /* restore dhcsr reg */
212 cortex_m3->dcb_dhcsr = dhcsr_save;
213 cortex_m3_clear_halt(target);
214
215 return ERROR_OK;
216 }
217
218 static int cortex_m3_endreset_event(struct target *target)
219 {
220 int i;
221 int retval;
222 uint32_t dcb_demcr;
223 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224 struct armv7m_common *armv7m = &cortex_m3->armv7m;
225 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
226 struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227 struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
228
229 /* REVISIT The four debug monitor bits are currently ignored... */
230 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231 if (retval != ERROR_OK)
232 return retval;
233 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
234
235 /* this register is used for emulated dcc channel */
236 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 /* Enable debug requests */
241 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242 if (retval != ERROR_OK)
243 return retval;
244 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
245 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246 if (retval != ERROR_OK)
247 return retval;
248 }
249
250 /* clear any interrupt masking */
251 cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
252
253 /* Enable features controlled by ITM and DWT blocks, and catch only
254 * the vectors we were told to pay attention to.
255 *
256 * Target firmware is responsible for all fault handling policy
257 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258 * or manual updates to the NVIC SHCSR and CCR registers.
259 */
260 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
261 if (retval != ERROR_OK)
262 return retval;
263
264 /* Paranoia: evidently some (early?) chips don't preserve all the
265 * debug state (including FBP, DWT, etc) across reset...
266 */
267
268 /* Enable FPB */
269 retval = target_write_u32(target, FP_CTRL, 3);
270 if (retval != ERROR_OK)
271 return retval;
272
273 cortex_m3->fpb_enabled = 1;
274
275 /* Restore FPB registers */
276 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
277 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
278 if (retval != ERROR_OK)
279 return retval;
280 }
281
282 /* Restore DWT registers */
283 for (i = 0; i < cortex_m3->dwt_num_comp; i++) {
284 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
285 dwt_list[i].comp);
286 if (retval != ERROR_OK)
287 return retval;
288 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
289 dwt_list[i].mask);
290 if (retval != ERROR_OK)
291 return retval;
292 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
293 dwt_list[i].function);
294 if (retval != ERROR_OK)
295 return retval;
296 }
297 retval = dap_run(swjdp);
298 if (retval != ERROR_OK)
299 return retval;
300
301 register_cache_invalidate(cortex_m3->armv7m.core_cache);
302
303 /* make sure we have latest dhcsr flags */
304 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
305
306 return retval;
307 }
308
309 static int cortex_m3_examine_debug_reason(struct target *target)
310 {
311 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
312
313 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
314 * only check the debug reason if we don't know it already */
315
316 if ((target->debug_reason != DBG_REASON_DBGRQ)
317 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
318 if (cortex_m3->nvic_dfsr & DFSR_BKPT) {
319 target->debug_reason = DBG_REASON_BREAKPOINT;
320 if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
321 target->debug_reason = DBG_REASON_WPTANDBKPT;
322 } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
323 target->debug_reason = DBG_REASON_WATCHPOINT;
324 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
325 target->debug_reason = DBG_REASON_BREAKPOINT;
326 else /* EXTERNAL, HALTED */
327 target->debug_reason = DBG_REASON_UNDEFINED;
328 }
329
330 return ERROR_OK;
331 }
332
333 static int cortex_m3_examine_exception_reason(struct target *target)
334 {
335 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
336 struct armv7m_common *armv7m = target_to_armv7m(target);
337 struct adiv5_dap *swjdp = &armv7m->dap;
338 int retval;
339
340 retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
341 if (retval != ERROR_OK)
342 return retval;
343 switch (armv7m->exception_number) {
344 case 2: /* NMI */
345 break;
346 case 3: /* Hard Fault */
347 retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
348 if (retval != ERROR_OK)
349 return retval;
350 if (except_sr & 0x40000000) {
351 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
352 if (retval != ERROR_OK)
353 return retval;
354 }
355 break;
356 case 4: /* Memory Management */
357 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
358 if (retval != ERROR_OK)
359 return retval;
360 retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
361 if (retval != ERROR_OK)
362 return retval;
363 break;
364 case 5: /* Bus Fault */
365 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366 if (retval != ERROR_OK)
367 return retval;
368 retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
369 if (retval != ERROR_OK)
370 return retval;
371 break;
372 case 6: /* Usage Fault */
373 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374 if (retval != ERROR_OK)
375 return retval;
376 break;
377 case 11: /* SVCall */
378 break;
379 case 12: /* Debug Monitor */
380 retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
381 if (retval != ERROR_OK)
382 return retval;
383 break;
384 case 14: /* PendSV */
385 break;
386 case 15: /* SysTick */
387 break;
388 default:
389 except_sr = 0;
390 break;
391 }
392 retval = dap_run(swjdp);
393 if (retval == ERROR_OK)
394 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
395 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
396 armv7m_exception_string(armv7m->exception_number),
397 shcsr, except_sr, cfsr, except_ar);
398 return retval;
399 }
400
401 static int cortex_m3_debug_entry(struct target *target)
402 {
403 int i;
404 uint32_t xPSR;
405 int retval;
406 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
407 struct armv7m_common *armv7m = &cortex_m3->armv7m;
408 struct arm *arm = &armv7m->arm;
409 struct adiv5_dap *swjdp = &armv7m->dap;
410 struct reg *r;
411
412 LOG_DEBUG(" ");
413
414 cortex_m3_clear_halt(target);
415 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
416 if (retval != ERROR_OK)
417 return retval;
418
419 retval = armv7m->examine_debug_reason(target);
420 if (retval != ERROR_OK)
421 return retval;
422
423 /* Examine target state and mode
424 * First load register acessible through core debug port*/
425 int num_regs = armv7m->core_cache->num_regs;
426
427 for (i = 0; i < num_regs; i++) {
428 if (!armv7m->core_cache->reg_list[i].valid)
429 armv7m->read_core_reg(target, i);
430 }
431
432 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
433 xPSR = buf_get_u32(r->value, 0, 32);
434
435 #ifdef ARMV7_GDB_HACKS
436 /* FIXME this breaks on scan chains with more than one Cortex-M3.
437 * Instead, each CM3 should have its own dummy value...
438 */
439 /* copy real xpsr reg for gdb, setting thumb bit */
440 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
441 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
442 armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
443 armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
444 #endif
445
446 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
447 if (xPSR & 0xf00) {
448 r->dirty = r->valid;
449 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR & ~0xff);
450 }
451
452 /* Are we in an exception handler */
453 if (xPSR & 0x1FF) {
454 armv7m->core_mode = ARMV7M_MODE_HANDLER;
455 armv7m->exception_number = (xPSR & 0x1FF);
456
457 arm->core_mode = ARM_MODE_HANDLER;
458 arm->map = armv7m_msp_reg_map;
459 } else {
460 unsigned control = buf_get_u32(armv7m->core_cache
461 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
462
463 /* is this thread privileged? */
464 armv7m->core_mode = control & 1;
465 arm->core_mode = armv7m->core_mode
466 ? ARM_MODE_USER_THREAD
467 : ARM_MODE_THREAD;
468
469 /* which stack is it using? */
470 if (control & 2)
471 arm->map = armv7m_psp_reg_map;
472 else
473 arm->map = armv7m_msp_reg_map;
474
475 armv7m->exception_number = 0;
476 }
477
478 if (armv7m->exception_number)
479 cortex_m3_examine_exception_reason(target);
480
481 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
482 armv7m_mode_strings[armv7m->core_mode],
483 *(uint32_t *)(arm->pc->value),
484 target_state_name(target));
485
486 if (armv7m->post_debug_entry) {
487 retval = armv7m->post_debug_entry(target);
488 if (retval != ERROR_OK)
489 return retval;
490 }
491
492 return ERROR_OK;
493 }
494
495 static int cortex_m3_poll(struct target *target)
496 {
497 int detected_failure = ERROR_OK;
498 int retval = ERROR_OK;
499 enum target_state prev_target_state = target->state;
500 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
501 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
502
503 /* Read from Debug Halting Control and Status Register */
504 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
505 if (retval != ERROR_OK) {
506 target->state = TARGET_UNKNOWN;
507 return retval;
508 }
509
510 /* Recover from lockup. See ARMv7-M architecture spec,
511 * section B1.5.15 "Unrecoverable exception cases".
512 */
513 if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
514 LOG_ERROR("%s -- clearing lockup after double fault",
515 target_name(target));
516 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
517 target->debug_reason = DBG_REASON_DBGRQ;
518
519 /* We have to execute the rest (the "finally" equivalent, but
520 * still throw this exception again).
521 */
522 detected_failure = ERROR_FAIL;
523
524 /* refresh status bits */
525 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
526 if (retval != ERROR_OK)
527 return retval;
528 }
529
530 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
531 /* check if still in reset */
532 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
533 if (retval != ERROR_OK)
534 return retval;
535
536 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
537 target->state = TARGET_RESET;
538 return ERROR_OK;
539 }
540 }
541
542 if (target->state == TARGET_RESET) {
543 /* Cannot switch context while running so endreset is
544 * called with target->state == TARGET_RESET
545 */
546 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
547 cortex_m3->dcb_dhcsr);
548 cortex_m3_endreset_event(target);
549 target->state = TARGET_RUNNING;
550 prev_target_state = TARGET_RUNNING;
551 }
552
553 if (cortex_m3->dcb_dhcsr & S_HALT) {
554 target->state = TARGET_HALTED;
555
556 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
557 retval = cortex_m3_debug_entry(target);
558 if (retval != ERROR_OK)
559 return retval;
560
561 if (arm_semihosting(target, &retval) != 0)
562 return retval;
563
564 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
565 }
566 if (prev_target_state == TARGET_DEBUG_RUNNING) {
567 LOG_DEBUG(" ");
568 retval = cortex_m3_debug_entry(target);
569 if (retval != ERROR_OK)
570 return retval;
571
572 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
573 }
574 }
575
576 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
577 * How best to model low power modes?
578 */
579
580 if (target->state == TARGET_UNKNOWN) {
581 /* check if processor is retiring instructions */
582 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) {
583 target->state = TARGET_RUNNING;
584 retval = ERROR_OK;
585 }
586 }
587
588 /* Did we detect a failure condition that we cleared? */
589 if (detected_failure != ERROR_OK)
590 retval = detected_failure;
591 return retval;
592 }
593
594 static int cortex_m3_halt(struct target *target)
595 {
596 LOG_DEBUG("target->state: %s",
597 target_state_name(target));
598
599 if (target->state == TARGET_HALTED) {
600 LOG_DEBUG("target was already halted");
601 return ERROR_OK;
602 }
603
604 if (target->state == TARGET_UNKNOWN)
605 LOG_WARNING("target was in unknown state when halt was requested");
606
607 if (target->state == TARGET_RESET) {
608 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
609 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
610 return ERROR_TARGET_FAILURE;
611 } else {
612 /* we came here in a reset_halt or reset_init sequence
613 * debug entry was already prepared in cortex_m3_assert_reset()
614 */
615 target->debug_reason = DBG_REASON_DBGRQ;
616
617 return ERROR_OK;
618 }
619 }
620
621 /* Write to Debug Halting Control and Status Register */
622 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
623
624 target->debug_reason = DBG_REASON_DBGRQ;
625
626 return ERROR_OK;
627 }
628
629 static int cortex_m3_soft_reset_halt(struct target *target)
630 {
631 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
632 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
633 uint32_t dcb_dhcsr = 0;
634 int retval, timeout = 0;
635
636 /* Enter debug state on reset; restore DEMCR in endreset_event() */
637 retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
638 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
639 if (retval != ERROR_OK)
640 return retval;
641
642 /* Request a core-only reset */
643 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
644 AIRCR_VECTKEY | AIRCR_VECTRESET);
645 if (retval != ERROR_OK)
646 return retval;
647 target->state = TARGET_RESET;
648
649 /* registers are now invalid */
650 register_cache_invalidate(cortex_m3->armv7m.core_cache);
651
652 while (timeout < 100) {
653 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
654 if (retval == ERROR_OK) {
655 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
656 &cortex_m3->nvic_dfsr);
657 if (retval != ERROR_OK)
658 return retval;
659 if ((dcb_dhcsr & S_HALT)
660 && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) {
661 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
662 "DFSR 0x%08x",
663 (unsigned) dcb_dhcsr,
664 (unsigned) cortex_m3->nvic_dfsr);
665 cortex_m3_poll(target);
666 /* FIXME restore user's vector catch config */
667 return ERROR_OK;
668 } else
669 LOG_DEBUG("waiting for system reset-halt, "
670 "DHCSR 0x%08x, %d ms",
671 (unsigned) dcb_dhcsr, timeout);
672 }
673 timeout++;
674 alive_sleep(1);
675 }
676
677 return ERROR_OK;
678 }
679
680 static void cortex_m3_enable_breakpoints(struct target *target)
681 {
682 struct breakpoint *breakpoint = target->breakpoints;
683
684 /* set any pending breakpoints */
685 while (breakpoint) {
686 if (!breakpoint->set)
687 cortex_m3_set_breakpoint(target, breakpoint);
688 breakpoint = breakpoint->next;
689 }
690 }
691
692 static int cortex_m3_resume(struct target *target, int current,
693 uint32_t address, int handle_breakpoints, int debug_execution)
694 {
695 struct armv7m_common *armv7m = target_to_armv7m(target);
696 struct breakpoint *breakpoint = NULL;
697 uint32_t resume_pc;
698 struct reg *r;
699
700 if (target->state != TARGET_HALTED) {
701 LOG_WARNING("target not halted");
702 return ERROR_TARGET_NOT_HALTED;
703 }
704
705 if (!debug_execution) {
706 target_free_all_working_areas(target);
707 cortex_m3_enable_breakpoints(target);
708 cortex_m3_enable_watchpoints(target);
709 }
710
711 if (debug_execution) {
712 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
713
714 /* Disable interrupts */
715 /* We disable interrupts in the PRIMASK register instead of
716 * masking with C_MASKINTS. This is probably the same issue
717 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
718 * in parallel with disabled interrupts can cause local faults
719 * to not be taken.
720 *
721 * REVISIT this clearly breaks non-debug execution, since the
722 * PRIMASK register state isn't saved/restored... workaround
723 * by never resuming app code after debug execution.
724 */
725 buf_set_u32(r->value, 0, 1, 1);
726 r->dirty = true;
727 r->valid = true;
728
729 /* Make sure we are in Thumb mode */
730 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
731 buf_set_u32(r->value, 24, 1, 1);
732 r->dirty = true;
733 r->valid = true;
734 }
735
736 /* current = 1: continue on current pc, otherwise continue at <address> */
737 r = armv7m->arm.pc;
738 if (!current) {
739 buf_set_u32(r->value, 0, 32, address);
740 r->dirty = true;
741 r->valid = true;
742 }
743
744 /* if we halted last time due to a bkpt instruction
745 * then we have to manually step over it, otherwise
746 * the core will break again */
747
748 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
749 && !debug_execution)
750 armv7m_maybe_skip_bkpt_inst(target, NULL);
751
752 resume_pc = buf_get_u32(r->value, 0, 32);
753
754 armv7m_restore_context(target);
755
756 /* the front-end may request us not to handle breakpoints */
757 if (handle_breakpoints) {
758 /* Single step past breakpoint at current address */
759 breakpoint = breakpoint_find(target, resume_pc);
760 if (breakpoint) {
761 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
762 breakpoint->address,
763 breakpoint->unique_id);
764 cortex_m3_unset_breakpoint(target, breakpoint);
765 cortex_m3_single_step_core(target);
766 cortex_m3_set_breakpoint(target, breakpoint);
767 }
768 }
769
770 /* Restart core */
771 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
772
773 target->debug_reason = DBG_REASON_NOTHALTED;
774
775 /* registers are now invalid */
776 register_cache_invalidate(armv7m->core_cache);
777
778 if (!debug_execution) {
779 target->state = TARGET_RUNNING;
780 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
781 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
782 } else {
783 target->state = TARGET_DEBUG_RUNNING;
784 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
785 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
786 }
787
788 return ERROR_OK;
789 }
790
791 /* int irqstepcount = 0; */
792 static int cortex_m3_step(struct target *target, int current,
793 uint32_t address, int handle_breakpoints)
794 {
795 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
796 struct armv7m_common *armv7m = &cortex_m3->armv7m;
797 struct adiv5_dap *swjdp = &armv7m->dap;
798 struct breakpoint *breakpoint = NULL;
799 struct reg *pc = armv7m->arm.pc;
800 bool bkpt_inst_found = false;
801 int retval;
802 bool isr_timed_out = false;
803
804 if (target->state != TARGET_HALTED) {
805 LOG_WARNING("target not halted");
806 return ERROR_TARGET_NOT_HALTED;
807 }
808
809 /* current = 1: continue on current pc, otherwise continue at <address> */
810 if (!current)
811 buf_set_u32(pc->value, 0, 32, address);
812
813 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
814
815 /* the front-end may request us not to handle breakpoints */
816 if (handle_breakpoints) {
817 breakpoint = breakpoint_find(target, pc_value);
818 if (breakpoint)
819 cortex_m3_unset_breakpoint(target, breakpoint);
820 }
821
822 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
823
824 target->debug_reason = DBG_REASON_SINGLESTEP;
825
826 armv7m_restore_context(target);
827
828 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
829
830 /* if no bkpt instruction is found at pc then we can perform
831 * a normal step, otherwise we have to manually step over the bkpt
832 * instruction - as such simulate a step */
833 if (bkpt_inst_found == false) {
834 /* Automatic ISR masking mode off: Just step over the next instruction */
835 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
836 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
837 else {
838 /* Process interrupts during stepping in a way they don't interfere
839 * debugging.
840 *
841 * Principle:
842 *
843 * Set a temporary break point at the current pc and let the core run
844 * with interrupts enabled. Pending interrupts get served and we run
845 * into the breakpoint again afterwards. Then we step over the next
846 * instruction with interrupts disabled.
847 *
848 * If the pending interrupts don't complete within time, we leave the
849 * core running. This may happen if the interrupts trigger faster
850 * than the core can process them or the handler doesn't return.
851 *
852 * If no more breakpoints are available we simply do a step with
853 * interrupts enabled.
854 *
855 */
856
857 /* Set a temporary break point */
858 retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
859 bool tmp_bp_set = (retval == ERROR_OK);
860
861 /* No more breakpoints left, just do a step */
862 if (!tmp_bp_set)
863 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
864 else {
865 /* Start the core */
866 LOG_DEBUG("Starting core to serve pending interrupts");
867 int64_t t_start = timeval_ms();
868 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
869
870 /* Wait for pending handlers to complete or timeout */
871 do {
872 retval = mem_ap_read_atomic_u32(swjdp,
873 DCB_DHCSR,
874 &cortex_m3->dcb_dhcsr);
875 if (retval != ERROR_OK) {
876 target->state = TARGET_UNKNOWN;
877 return retval;
878 }
879 isr_timed_out = ((timeval_ms() - t_start) > 500);
880 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
881
882 /* Remove the temporary breakpoint */
883 breakpoint_remove(target, pc_value);
884
885 if (isr_timed_out) {
886 LOG_DEBUG("Interrupt handlers didn't complete within time, "
887 "leaving target running");
888 } else {
889 /* Step over next instruction with interrupts disabled */
890 cortex_m3_write_debug_halt_mask(target,
891 C_HALT | C_MASKINTS,
892 0);
893 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
894 /* Re-enable interrupts */
895 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
896 }
897 }
898 }
899 }
900
901 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
902 if (retval != ERROR_OK)
903 return retval;
904
905 /* registers are now invalid */
906 register_cache_invalidate(cortex_m3->armv7m.core_cache);
907
908 if (breakpoint)
909 cortex_m3_set_breakpoint(target, breakpoint);
910
911 if (isr_timed_out) {
912 /* Leave the core running. The user has to stop execution manually. */
913 target->debug_reason = DBG_REASON_NOTHALTED;
914 target->state = TARGET_RUNNING;
915 return ERROR_OK;
916 }
917
918 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
919 " nvic_icsr = 0x%" PRIx32,
920 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
921
922 retval = cortex_m3_debug_entry(target);
923 if (retval != ERROR_OK)
924 return retval;
925 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
926
927 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
928 " nvic_icsr = 0x%" PRIx32,
929 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
930
931 return ERROR_OK;
932 }
933
934 static int cortex_m3_assert_reset(struct target *target)
935 {
936 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
937 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
938 enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
939
940 LOG_DEBUG("target->state: %s",
941 target_state_name(target));
942
943 enum reset_types jtag_reset_config = jtag_get_reset_config();
944
945 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
946 /* allow scripts to override the reset event */
947
948 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
949 register_cache_invalidate(cortex_m3->armv7m.core_cache);
950 target->state = TARGET_RESET;
951
952 return ERROR_OK;
953 }
954
955 /* Enable debug requests */
956 int retval;
957 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
958 if (retval != ERROR_OK)
959 return retval;
960 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
961 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
962 if (retval != ERROR_OK)
963 return retval;
964 }
965
966 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
967 if (retval != ERROR_OK)
968 return retval;
969
970 if (!target->reset_halt) {
971 /* Set/Clear C_MASKINTS in a separate operation */
972 if (cortex_m3->dcb_dhcsr & C_MASKINTS) {
973 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
974 DBGKEY | C_DEBUGEN | C_HALT);
975 if (retval != ERROR_OK)
976 return retval;
977 }
978
979 /* clear any debug flags before resuming */
980 cortex_m3_clear_halt(target);
981
982 /* clear C_HALT in dhcsr reg */
983 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
984 } else {
985 /* Halt in debug on reset; endreset_event() restores DEMCR.
986 *
987 * REVISIT catching BUSERR presumably helps to defend against
988 * bad vector table entries. Should this include MMERR or
989 * other flags too?
990 */
991 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
992 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
993 if (retval != ERROR_OK)
994 return retval;
995 }
996
997 if (jtag_reset_config & RESET_HAS_SRST) {
998 /* default to asserting srst */
999 adapter_assert_reset();
1000 } else {
1001 /* Use a standard Cortex-M3 software reset mechanism.
1002 * We default to using VECRESET as it is supported on all current cores.
1003 * This has the disadvantage of not resetting the peripherals, so a
1004 * reset-init event handler is needed to perform any peripheral resets.
1005 */
1006 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1007 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1008 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1009 if (retval != ERROR_OK)
1010 return retval;
1011
1012 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1013 ? "SYSRESETREQ" : "VECTRESET");
1014
1015 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1016 LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1017 "handler to reset any peripherals");
1018 }
1019
1020 {
1021 /* I do not know why this is necessary, but it
1022 * fixes strange effects (step/resume cause NMI
1023 * after reset) on LM3S6918 -- Michael Schwingen
1024 */
1025 uint32_t tmp;
1026 retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1027 if (retval != ERROR_OK)
1028 return retval;
1029 }
1030 }
1031
1032 target->state = TARGET_RESET;
1033 jtag_add_sleep(50000);
1034
1035 register_cache_invalidate(cortex_m3->armv7m.core_cache);
1036
1037 if (target->reset_halt) {
1038 retval = target_halt(target);
1039 if (retval != ERROR_OK)
1040 return retval;
1041 }
1042
1043 return ERROR_OK;
1044 }
1045
1046 static int cortex_m3_deassert_reset(struct target *target)
1047 {
1048 LOG_DEBUG("target->state: %s",
1049 target_state_name(target));
1050
1051 /* deassert reset lines */
1052 adapter_deassert_reset();
1053
1054 return ERROR_OK;
1055 }
1056
1057 int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1058 {
1059 int retval;
1060 int fp_num = 0;
1061 uint32_t hilo;
1062 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1063 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1064
1065 if (breakpoint->set) {
1066 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1067 return ERROR_OK;
1068 }
1069
1070 if (cortex_m3->auto_bp_type)
1071 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1072
1073 if (breakpoint->type == BKPT_HARD) {
1074 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1075 fp_num++;
1076 if (fp_num >= cortex_m3->fp_num_code) {
1077 LOG_ERROR("Can not find free FPB Comparator!");
1078 return ERROR_FAIL;
1079 }
1080 breakpoint->set = fp_num + 1;
1081 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1082 comparator_list[fp_num].used = 1;
1083 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1084 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1085 comparator_list[fp_num].fpcr_value);
1086 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1087 fp_num,
1088 comparator_list[fp_num].fpcr_value);
1089 if (!cortex_m3->fpb_enabled) {
1090 LOG_DEBUG("FPB wasn't enabled, do it now");
1091 target_write_u32(target, FP_CTRL, 3);
1092 }
1093 } else if (breakpoint->type == BKPT_SOFT) {
1094 uint8_t code[4];
1095
1096 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1097 * semihosting; don't use that. Otherwise the BKPT
1098 * parameter is arbitrary.
1099 */
1100 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1101 retval = target_read_memory(target,
1102 breakpoint->address & 0xFFFFFFFE,
1103 breakpoint->length, 1,
1104 breakpoint->orig_instr);
1105 if (retval != ERROR_OK)
1106 return retval;
1107 retval = target_write_memory(target,
1108 breakpoint->address & 0xFFFFFFFE,
1109 breakpoint->length, 1,
1110 code);
1111 if (retval != ERROR_OK)
1112 return retval;
1113 breakpoint->set = true;
1114 }
1115
1116 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1117 breakpoint->unique_id,
1118 (int)(breakpoint->type),
1119 breakpoint->address,
1120 breakpoint->length,
1121 breakpoint->set);
1122
1123 return ERROR_OK;
1124 }
1125
1126 int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1127 {
1128 int retval;
1129 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1130 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1131
1132 if (!breakpoint->set) {
1133 LOG_WARNING("breakpoint not set");
1134 return ERROR_OK;
1135 }
1136
1137 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1138 breakpoint->unique_id,
1139 (int)(breakpoint->type),
1140 breakpoint->address,
1141 breakpoint->length,
1142 breakpoint->set);
1143
1144 if (breakpoint->type == BKPT_HARD) {
1145 int fp_num = breakpoint->set - 1;
1146 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) {
1147 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1148 return ERROR_OK;
1149 }
1150 comparator_list[fp_num].used = 0;
1151 comparator_list[fp_num].fpcr_value = 0;
1152 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1153 comparator_list[fp_num].fpcr_value);
1154 } else {
1155 /* restore original instruction (kept in target endianness) */
1156 if (breakpoint->length == 4) {
1157 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1158 breakpoint->orig_instr);
1159 if (retval != ERROR_OK)
1160 return retval;
1161 } else {
1162 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1163 breakpoint->orig_instr);
1164 if (retval != ERROR_OK)
1165 return retval;
1166 }
1167 }
1168 breakpoint->set = false;
1169
1170 return ERROR_OK;
1171 }
1172
1173 int cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1174 {
1175 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1176
1177 if (cortex_m3->auto_bp_type) {
1178 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1179 #ifdef ARMV7_GDB_HACKS
1180 if (breakpoint->length != 2) {
1181 /* XXX Hack: Replace all breakpoints with length != 2 with
1182 * a hardware breakpoint. */
1183 breakpoint->type = BKPT_HARD;
1184 breakpoint->length = 2;
1185 }
1186 #endif
1187 }
1188
1189 if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1190 if (breakpoint->type == BKPT_HARD) {
1191 LOG_INFO("flash patch comparator requested outside code memory region");
1192 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1193 }
1194
1195 if (breakpoint->type == BKPT_SOFT) {
1196 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1197 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1198 }
1199 }
1200
1201 if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) {
1202 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1203 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1204 }
1205
1206 if ((breakpoint->length != 2)) {
1207 LOG_INFO("only breakpoints of two bytes length supported");
1208 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1209 }
1210
1211 if (breakpoint->type == BKPT_HARD)
1212 cortex_m3->fp_code_available--;
1213
1214 return cortex_m3_set_breakpoint(target, breakpoint);
1215 }
1216
1217 int cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1218 {
1219 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1220
1221 /* REVISIT why check? FBP can be updated with core running ... */
1222 if (target->state != TARGET_HALTED) {
1223 LOG_WARNING("target not halted");
1224 return ERROR_TARGET_NOT_HALTED;
1225 }
1226
1227 if (cortex_m3->auto_bp_type)
1228 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1229
1230 if (breakpoint->set)
1231 cortex_m3_unset_breakpoint(target, breakpoint);
1232
1233 if (breakpoint->type == BKPT_HARD)
1234 cortex_m3->fp_code_available++;
1235
1236 return ERROR_OK;
1237 }
1238
1239 int cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1240 {
1241 int dwt_num = 0;
1242 uint32_t mask, temp;
1243 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1244
1245 /* watchpoint params were validated earlier */
1246 mask = 0;
1247 temp = watchpoint->length;
1248 while (temp) {
1249 temp >>= 1;
1250 mask++;
1251 }
1252 mask--;
1253
1254 /* REVISIT Don't fully trust these "not used" records ... users
1255 * may set up breakpoints by hand, e.g. dual-address data value
1256 * watchpoint using comparator #1; comparator #0 matching cycle
1257 * count; send data trace info through ITM and TPIU; etc
1258 */
1259 struct cortex_m3_dwt_comparator *comparator;
1260
1261 for (comparator = cortex_m3->dwt_comparator_list;
1262 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1263 comparator++, dwt_num++)
1264 continue;
1265 if (dwt_num >= cortex_m3->dwt_num_comp) {
1266 LOG_ERROR("Can not find free DWT Comparator");
1267 return ERROR_FAIL;
1268 }
1269 comparator->used = 1;
1270 watchpoint->set = dwt_num + 1;
1271
1272 comparator->comp = watchpoint->address;
1273 target_write_u32(target, comparator->dwt_comparator_address + 0,
1274 comparator->comp);
1275
1276 comparator->mask = mask;
1277 target_write_u32(target, comparator->dwt_comparator_address + 4,
1278 comparator->mask);
1279
1280 switch (watchpoint->rw) {
1281 case WPT_READ:
1282 comparator->function = 5;
1283 break;
1284 case WPT_WRITE:
1285 comparator->function = 6;
1286 break;
1287 case WPT_ACCESS:
1288 comparator->function = 7;
1289 break;
1290 }
1291 target_write_u32(target, comparator->dwt_comparator_address + 8,
1292 comparator->function);
1293
1294 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1295 watchpoint->unique_id, dwt_num,
1296 (unsigned) comparator->comp,
1297 (unsigned) comparator->mask,
1298 (unsigned) comparator->function);
1299 return ERROR_OK;
1300 }
1301
1302 int cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1303 {
1304 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1305 struct cortex_m3_dwt_comparator *comparator;
1306 int dwt_num;
1307
1308 if (!watchpoint->set) {
1309 LOG_WARNING("watchpoint (wpid: %d) not set",
1310 watchpoint->unique_id);
1311 return ERROR_OK;
1312 }
1313
1314 dwt_num = watchpoint->set - 1;
1315
1316 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1317 watchpoint->unique_id, dwt_num,
1318 (unsigned) watchpoint->address);
1319
1320 if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) {
1321 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1322 return ERROR_OK;
1323 }
1324
1325 comparator = cortex_m3->dwt_comparator_list + dwt_num;
1326 comparator->used = 0;
1327 comparator->function = 0;
1328 target_write_u32(target, comparator->dwt_comparator_address + 8,
1329 comparator->function);
1330
1331 watchpoint->set = false;
1332
1333 return ERROR_OK;
1334 }
1335
1336 int cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1337 {
1338 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1339
1340 if (cortex_m3->dwt_comp_available < 1) {
1341 LOG_DEBUG("no comparators?");
1342 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1343 }
1344
1345 /* hardware doesn't support data value masking */
1346 if (watchpoint->mask != ~(uint32_t)0) {
1347 LOG_DEBUG("watchpoint value masks not supported");
1348 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1349 }
1350
1351 /* hardware allows address masks of up to 32K */
1352 unsigned mask;
1353
1354 for (mask = 0; mask < 16; mask++) {
1355 if ((1u << mask) == watchpoint->length)
1356 break;
1357 }
1358 if (mask == 16) {
1359 LOG_DEBUG("unsupported watchpoint length");
1360 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1361 }
1362 if (watchpoint->address & ((1 << mask) - 1)) {
1363 LOG_DEBUG("watchpoint address is unaligned");
1364 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1365 }
1366
1367 /* Caller doesn't seem to be able to describe watching for data
1368 * values of zero; that flags "no value".
1369 *
1370 * REVISIT This DWT may well be able to watch for specific data
1371 * values. Requires comparator #1 to set DATAVMATCH and match
1372 * the data, and another comparator (DATAVADDR0) matching addr.
1373 */
1374 if (watchpoint->value) {
1375 LOG_DEBUG("data value watchpoint not YET supported");
1376 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1377 }
1378
1379 cortex_m3->dwt_comp_available--;
1380 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1381
1382 return ERROR_OK;
1383 }
1384
1385 int cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1386 {
1387 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1388
1389 /* REVISIT why check? DWT can be updated with core running ... */
1390 if (target->state != TARGET_HALTED) {
1391 LOG_WARNING("target not halted");
1392 return ERROR_TARGET_NOT_HALTED;
1393 }
1394
1395 if (watchpoint->set)
1396 cortex_m3_unset_watchpoint(target, watchpoint);
1397
1398 cortex_m3->dwt_comp_available++;
1399 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1400
1401 return ERROR_OK;
1402 }
1403
1404 void cortex_m3_enable_watchpoints(struct target *target)
1405 {
1406 struct watchpoint *watchpoint = target->watchpoints;
1407
1408 /* set any pending watchpoints */
1409 while (watchpoint) {
1410 if (!watchpoint->set)
1411 cortex_m3_set_watchpoint(target, watchpoint);
1412 watchpoint = watchpoint->next;
1413 }
1414 }
1415
1416 static int cortex_m3_load_core_reg_u32(struct target *target,
1417 enum armv7m_regtype type, uint32_t num, uint32_t *value)
1418 {
1419 int retval;
1420 struct armv7m_common *armv7m = target_to_armv7m(target);
1421 struct adiv5_dap *swjdp = &armv7m->dap;
1422
1423 /* NOTE: we "know" here that the register identifiers used
1424 * in the v7m header match the Cortex-M3 Debug Core Register
1425 * Selector values for R0..R15, xPSR, MSP, and PSP.
1426 */
1427 switch (num) {
1428 case 0 ... 18:
1429 /* read a normal core register */
1430 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1431
1432 if (retval != ERROR_OK) {
1433 LOG_ERROR("JTAG failure %i", retval);
1434 return ERROR_JTAG_DEVICE_ERROR;
1435 }
1436 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1437 break;
1438
1439 case ARMV7M_PRIMASK:
1440 case ARMV7M_BASEPRI:
1441 case ARMV7M_FAULTMASK:
1442 case ARMV7M_CONTROL:
1443 /* Cortex-M3 packages these four registers as bitfields
1444 * in one Debug Core register. So say r0 and r2 docs;
1445 * it was removed from r1 docs, but still works.
1446 */
1447 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1448
1449 switch (num) {
1450 case ARMV7M_PRIMASK:
1451 *value = buf_get_u32((uint8_t *)value, 0, 1);
1452 break;
1453
1454 case ARMV7M_BASEPRI:
1455 *value = buf_get_u32((uint8_t *)value, 8, 8);
1456 break;
1457
1458 case ARMV7M_FAULTMASK:
1459 *value = buf_get_u32((uint8_t *)value, 16, 1);
1460 break;
1461
1462 case ARMV7M_CONTROL:
1463 *value = buf_get_u32((uint8_t *)value, 24, 2);
1464 break;
1465 }
1466
1467 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1468 break;
1469
1470 default:
1471 return ERROR_COMMAND_SYNTAX_ERROR;
1472 }
1473
1474 return ERROR_OK;
1475 }
1476
1477 static int cortex_m3_store_core_reg_u32(struct target *target,
1478 enum armv7m_regtype type, uint32_t num, uint32_t value)
1479 {
1480 int retval;
1481 uint32_t reg;
1482 struct armv7m_common *armv7m = target_to_armv7m(target);
1483 struct adiv5_dap *swjdp = &armv7m->dap;
1484
1485 #ifdef ARMV7_GDB_HACKS
1486 /* If the LR register is being modified, make sure it will put us
1487 * in "thumb" mode, or an INVSTATE exception will occur. This is a
1488 * hack to deal with the fact that gdb will sometimes "forge"
1489 * return addresses, and doesn't set the LSB correctly (i.e., when
1490 * printing expressions containing function calls, it sets LR = 0.)
1491 * Valid exception return codes have bit 0 set too.
1492 */
1493 if (num == ARMV7M_R14)
1494 value |= 0x01;
1495 #endif
1496
1497 /* NOTE: we "know" here that the register identifiers used
1498 * in the v7m header match the Cortex-M3 Debug Core Register
1499 * Selector values for R0..R15, xPSR, MSP, and PSP.
1500 */
1501 switch (num) {
1502 case 0 ... 18:
1503 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1504 if (retval != ERROR_OK) {
1505 struct reg *r;
1506
1507 LOG_ERROR("JTAG failure");
1508 r = armv7m->core_cache->reg_list + num;
1509 r->dirty = r->valid;
1510 return ERROR_JTAG_DEVICE_ERROR;
1511 }
1512 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1513 break;
1514
1515 case ARMV7M_PRIMASK:
1516 case ARMV7M_BASEPRI:
1517 case ARMV7M_FAULTMASK:
1518 case ARMV7M_CONTROL:
1519 /* Cortex-M3 packages these four registers as bitfields
1520 * in one Debug Core register. So say r0 and r2 docs;
1521 * it was removed from r1 docs, but still works.
1522 */
1523 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1524
1525 switch (num) {
1526 case ARMV7M_PRIMASK:
1527 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1528 break;
1529
1530 case ARMV7M_BASEPRI:
1531 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1532 break;
1533
1534 case ARMV7M_FAULTMASK:
1535 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1536 break;
1537
1538 case ARMV7M_CONTROL:
1539 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1540 break;
1541 }
1542
1543 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1544
1545 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1546 break;
1547
1548 default:
1549 return ERROR_COMMAND_SYNTAX_ERROR;
1550 }
1551
1552 return ERROR_OK;
1553 }
1554
1555 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1556 uint32_t size, uint32_t count, uint8_t *buffer)
1557 {
1558 struct armv7m_common *armv7m = target_to_armv7m(target);
1559 struct adiv5_dap *swjdp = &armv7m->dap;
1560 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1561
1562 /* cortex_m3 handles unaligned memory access */
1563 if (count && buffer) {
1564 switch (size) {
1565 case 4:
1566 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1567 break;
1568 case 2:
1569 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1570 break;
1571 case 1:
1572 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1573 break;
1574 }
1575 }
1576
1577 return retval;
1578 }
1579
1580 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1581 uint32_t size, uint32_t count, const uint8_t *buffer)
1582 {
1583 struct armv7m_common *armv7m = target_to_armv7m(target);
1584 struct adiv5_dap *swjdp = &armv7m->dap;
1585 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1586
1587 if (count && buffer) {
1588 switch (size) {
1589 case 4:
1590 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1591 break;
1592 case 2:
1593 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1594 break;
1595 case 1:
1596 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1597 break;
1598 }
1599 }
1600
1601 return retval;
1602 }
1603
1604 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1605 uint32_t count, const uint8_t *buffer)
1606 {
1607 return cortex_m3_write_memory(target, address, 4, count, buffer);
1608 }
1609
1610 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1611 struct target *target)
1612 {
1613 armv7m_build_reg_cache(target);
1614 return ERROR_OK;
1615 }
1616
1617 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1618 * on r/w if the core is not running, and clear on resume or reset ... or
1619 * at least, in a post_restore_context() method.
1620 */
1621
1622 struct dwt_reg_state {
1623 struct target *target;
1624 uint32_t addr;
1625 uint32_t value; /* scratch/cache */
1626 };
1627
1628 static int cortex_m3_dwt_get_reg(struct reg *reg)
1629 {
1630 struct dwt_reg_state *state = reg->arch_info;
1631
1632 return target_read_u32(state->target, state->addr, &state->value);
1633 }
1634
1635 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1636 {
1637 struct dwt_reg_state *state = reg->arch_info;
1638
1639 return target_write_u32(state->target, state->addr,
1640 buf_get_u32(buf, 0, reg->size));
1641 }
1642
1643 struct dwt_reg {
1644 uint32_t addr;
1645 char *name;
1646 unsigned size;
1647 };
1648
1649 static struct dwt_reg dwt_base_regs[] = {
1650 { DWT_CTRL, "dwt_ctrl", 32, },
1651 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1652 * increments while the core is asleep.
1653 */
1654 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1655 /* plus some 8 bit counters, useful for profiling with TPIU */
1656 };
1657
1658 static struct dwt_reg dwt_comp[] = {
1659 #define DWT_COMPARATOR(i) \
1660 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1661 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1662 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1663 DWT_COMPARATOR(0),
1664 DWT_COMPARATOR(1),
1665 DWT_COMPARATOR(2),
1666 DWT_COMPARATOR(3),
1667 #undef DWT_COMPARATOR
1668 };
1669
1670 static const struct reg_arch_type dwt_reg_type = {
1671 .get = cortex_m3_dwt_get_reg,
1672 .set = cortex_m3_dwt_set_reg,
1673 };
1674
1675 static void cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1676 {
1677 struct dwt_reg_state *state;
1678
1679 state = calloc(1, sizeof *state);
1680 if (!state)
1681 return;
1682 state->addr = d->addr;
1683 state->target = t;
1684
1685 r->name = d->name;
1686 r->size = d->size;
1687 r->value = &state->value;
1688 r->arch_info = state;
1689 r->type = &dwt_reg_type;
1690 }
1691
1692 void cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1693 {
1694 uint32_t dwtcr;
1695 struct reg_cache *cache;
1696 struct cortex_m3_dwt_comparator *comparator;
1697 int reg, i;
1698
1699 target_read_u32(target, DWT_CTRL, &dwtcr);
1700 if (!dwtcr) {
1701 LOG_DEBUG("no DWT");
1702 return;
1703 }
1704
1705 cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1706 cm3->dwt_comp_available = cm3->dwt_num_comp;
1707 cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1708 sizeof(struct cortex_m3_dwt_comparator));
1709 if (!cm3->dwt_comparator_list) {
1710 fail0:
1711 cm3->dwt_num_comp = 0;
1712 LOG_ERROR("out of mem");
1713 return;
1714 }
1715
1716 cache = calloc(1, sizeof *cache);
1717 if (!cache) {
1718 fail1:
1719 free(cm3->dwt_comparator_list);
1720 goto fail0;
1721 }
1722 cache->name = "cortex-m3 dwt registers";
1723 cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1724 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1725 if (!cache->reg_list) {
1726 free(cache);
1727 goto fail1;
1728 }
1729
1730 for (reg = 0; reg < 2; reg++)
1731 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1732 dwt_base_regs + reg);
1733
1734 comparator = cm3->dwt_comparator_list;
1735 for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1736 int j;
1737
1738 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1739 for (j = 0; j < 3; j++, reg++)
1740 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1741 dwt_comp + 3 * i + j);
1742 }
1743
1744 *register_get_last_cache_p(&target->reg_cache) = cache;
1745 cm3->dwt_cache = cache;
1746
1747 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1748 dwtcr, cm3->dwt_num_comp,
1749 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1750
1751 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1752 * implement single-address data value watchpoints ... so we
1753 * won't need to check it later, when asked to set one up.
1754 */
1755 }
1756
1757 #define MVFR0 0xe000ef40
1758 #define MVFR1 0xe000ef44
1759
1760 #define MVFR0_DEFAULT_M4 0x10110021
1761 #define MVFR1_DEFAULT_M4 0x11000011
1762
1763 int cortex_m3_examine(struct target *target)
1764 {
1765 int retval;
1766 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1767 int i;
1768 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1769 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1770 struct armv7m_common *armv7m = target_to_armv7m(target);
1771
1772 retval = ahbap_debugport_init(swjdp);
1773 if (retval != ERROR_OK)
1774 return retval;
1775
1776 if (!target_was_examined(target)) {
1777 target_set_examined(target);
1778
1779 /* Read from Device Identification Registers */
1780 retval = target_read_u32(target, CPUID, &cpuid);
1781 if (retval != ERROR_OK)
1782 return retval;
1783
1784 /* Get CPU Type */
1785 i = (cpuid >> 4) & 0xf;
1786
1787 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1788 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1789 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1790
1791 /* test for floating point feature on cortex-m4 */
1792 if (i == 4) {
1793 target_read_u32(target, MVFR0, &mvfr0);
1794 target_read_u32(target, MVFR1, &mvfr1);
1795
1796 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1797 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1798 armv7m->fp_feature = FPv4_SP;
1799 }
1800 }
1801
1802 /* NOTE: FPB and DWT are both optional. */
1803
1804 /* Setup FPB */
1805 target_read_u32(target, FP_CTRL, &fpcr);
1806 cortex_m3->auto_bp_type = 1;
1807 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits
1808 *[14:12]
1809 *and [7:4]
1810 **/
1811 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1812 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1813 cortex_m3->fp_comparator_list = calloc(
1814 cortex_m3->fp_num_code + cortex_m3->fp_num_lit,
1815 sizeof(struct cortex_m3_fp_comparator));
1816 cortex_m3->fpb_enabled = fpcr & 1;
1817 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
1818 cortex_m3->fp_comparator_list[i].type =
1819 (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1820 cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1821 }
1822 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1823 fpcr,
1824 cortex_m3->fp_num_code,
1825 cortex_m3->fp_num_lit);
1826
1827 /* Setup DWT */
1828 cortex_m3_dwt_setup(cortex_m3, target);
1829
1830 /* These hardware breakpoints only work for code in flash! */
1831 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1832 target_name(target),
1833 cortex_m3->fp_num_code,
1834 cortex_m3->dwt_num_comp);
1835 }
1836
1837 return ERROR_OK;
1838 }
1839
1840 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1841 {
1842 uint16_t dcrdr;
1843 int retval;
1844
1845 mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1846 *ctrl = (uint8_t)dcrdr;
1847 *value = (uint8_t)(dcrdr >> 8);
1848
1849 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1850
1851 /* write ack back to software dcc register
1852 * signify we have read data */
1853 if (dcrdr & (1 << 0)) {
1854 dcrdr = 0;
1855 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1856 if (retval != ERROR_OK)
1857 return retval;
1858 }
1859
1860 return ERROR_OK;
1861 }
1862
1863 static int cortex_m3_target_request_data(struct target *target,
1864 uint32_t size, uint8_t *buffer)
1865 {
1866 struct armv7m_common *armv7m = target_to_armv7m(target);
1867 struct adiv5_dap *swjdp = &armv7m->dap;
1868 uint8_t data;
1869 uint8_t ctrl;
1870 uint32_t i;
1871
1872 for (i = 0; i < (size * 4); i++) {
1873 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1874 buffer[i] = data;
1875 }
1876
1877 return ERROR_OK;
1878 }
1879
1880 static int cortex_m3_handle_target_request(void *priv)
1881 {
1882 struct target *target = priv;
1883 if (!target_was_examined(target))
1884 return ERROR_OK;
1885 struct armv7m_common *armv7m = target_to_armv7m(target);
1886 struct adiv5_dap *swjdp = &armv7m->dap;
1887
1888 if (!target->dbg_msg_enabled)
1889 return ERROR_OK;
1890
1891 if (target->state == TARGET_RUNNING) {
1892 uint8_t data;
1893 uint8_t ctrl;
1894
1895 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1896
1897 /* check if we have data */
1898 if (ctrl & (1 << 0)) {
1899 uint32_t request;
1900
1901 /* we assume target is quick enough */
1902 request = data;
1903 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1904 request |= (data << 8);
1905 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1906 request |= (data << 16);
1907 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1908 request |= (data << 24);
1909 target_request(target, request);
1910 }
1911 }
1912
1913 return ERROR_OK;
1914 }
1915
1916 static int cortex_m3_init_arch_info(struct target *target,
1917 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1918 {
1919 int retval;
1920 struct armv7m_common *armv7m = &cortex_m3->armv7m;
1921
1922 armv7m_init_arch_info(target, armv7m);
1923
1924 /* prepare JTAG information for the new target */
1925 cortex_m3->jtag_info.tap = tap;
1926 cortex_m3->jtag_info.scann_size = 4;
1927
1928 /* default reset mode is to use srst if fitted
1929 * if not it will use CORTEX_M3_RESET_VECTRESET */
1930 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
1931
1932 armv7m->arm.dap = &armv7m->dap;
1933
1934 /* Leave (only) generic DAP stuff for debugport_init(); */
1935 armv7m->dap.jtag_info = &cortex_m3->jtag_info;
1936 armv7m->dap.memaccess_tck = 8;
1937 /* Cortex-M3 has 4096 bytes autoincrement range */
1938 armv7m->dap.tar_autoincr_block = (1 << 12);
1939
1940 /* register arch-specific functions */
1941 armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1942
1943 armv7m->post_debug_entry = NULL;
1944
1945 armv7m->pre_restore_context = NULL;
1946
1947 armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1948 armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1949
1950 target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1951
1952 retval = arm_jtag_setup_connection(&cortex_m3->jtag_info);
1953 if (retval != ERROR_OK)
1954 return retval;
1955
1956 return ERROR_OK;
1957 }
1958
1959 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1960 {
1961 struct cortex_m3_common *cortex_m3 = calloc(1, sizeof(struct cortex_m3_common));
1962
1963 cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1964 cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1965
1966 return ERROR_OK;
1967 }
1968
1969 /*--------------------------------------------------------------------------*/
1970
1971 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1972 struct cortex_m3_common *cm3)
1973 {
1974 if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1975 command_print(cmd_ctx, "target is not a Cortex-M3");
1976 return ERROR_TARGET_INVALID;
1977 }
1978 return ERROR_OK;
1979 }
1980
1981 /*
1982 * Only stuff below this line should need to verify that its target
1983 * is a Cortex-M3. Everything else should have indirected through the
1984 * cortexm3_target structure, which is only used with CM3 targets.
1985 */
1986
1987 static const struct {
1988 char name[10];
1989 unsigned mask;
1990 } vec_ids[] = {
1991 { "hard_err", VC_HARDERR, },
1992 { "int_err", VC_INTERR, },
1993 { "bus_err", VC_BUSERR, },
1994 { "state_err", VC_STATERR, },
1995 { "chk_err", VC_CHKERR, },
1996 { "nocp_err", VC_NOCPERR, },
1997 { "mm_err", VC_MMERR, },
1998 { "reset", VC_CORERESET, },
1999 };
2000
2001 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2002 {
2003 struct target *target = get_current_target(CMD_CTX);
2004 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2005 struct armv7m_common *armv7m = &cortex_m3->armv7m;
2006 struct adiv5_dap *swjdp = &armv7m->dap;
2007 uint32_t demcr = 0;
2008 int retval;
2009
2010 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2011 if (retval != ERROR_OK)
2012 return retval;
2013
2014 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2015 if (retval != ERROR_OK)
2016 return retval;
2017
2018 if (CMD_ARGC > 0) {
2019 unsigned catch = 0;
2020
2021 if (CMD_ARGC == 1) {
2022 if (strcmp(CMD_ARGV[0], "all") == 0) {
2023 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2024 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2025 | VC_MMERR | VC_CORERESET;
2026 goto write;
2027 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2028 goto write;
2029 }
2030 while (CMD_ARGC-- > 0) {
2031 unsigned i;
2032 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2033 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2034 continue;
2035 catch |= vec_ids[i].mask;
2036 break;
2037 }
2038 if (i == ARRAY_SIZE(vec_ids)) {
2039 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2040 return ERROR_COMMAND_SYNTAX_ERROR;
2041 }
2042 }
2043 write:
2044 /* For now, armv7m->demcr only stores vector catch flags. */
2045 armv7m->demcr = catch;
2046
2047 demcr &= ~0xffff;
2048 demcr |= catch;
2049
2050 /* write, but don't assume it stuck (why not??) */
2051 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2052 if (retval != ERROR_OK)
2053 return retval;
2054 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2055 if (retval != ERROR_OK)
2056 return retval;
2057
2058 /* FIXME be sure to clear DEMCR on clean server shutdown.
2059 * Otherwise the vector catch hardware could fire when there's
2060 * no debugger hooked up, causing much confusion...
2061 */
2062 }
2063
2064 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2065 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2066 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2067 }
2068
2069 return ERROR_OK;
2070 }
2071
2072 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2073 {
2074 struct target *target = get_current_target(CMD_CTX);
2075 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2076 int retval;
2077
2078 static const Jim_Nvp nvp_maskisr_modes[] = {
2079 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2080 { .name = "off", .value = CORTEX_M3_ISRMASK_OFF },
2081 { .name = "on", .value = CORTEX_M3_ISRMASK_ON },
2082 { .name = NULL, .value = -1 },
2083 };
2084 const Jim_Nvp *n;
2085
2086
2087 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2088 if (retval != ERROR_OK)
2089 return retval;
2090
2091 if (target->state != TARGET_HALTED) {
2092 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2093 return ERROR_OK;
2094 }
2095
2096 if (CMD_ARGC > 0) {
2097 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2098 if (n->name == NULL)
2099 return ERROR_COMMAND_SYNTAX_ERROR;
2100 cortex_m3->isrmasking_mode = n->value;
2101
2102
2103 if (cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2104 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2105 else
2106 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2107 }
2108
2109 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2110 command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2111
2112 return ERROR_OK;
2113 }
2114
2115 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2116 {
2117 struct target *target = get_current_target(CMD_CTX);
2118 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2119 int retval;
2120 char *reset_config;
2121
2122 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2123 if (retval != ERROR_OK)
2124 return retval;
2125
2126 if (CMD_ARGC > 0) {
2127 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2128 cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2129 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2130 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2131 }
2132
2133 switch (cortex_m3->soft_reset_config) {
2134 case CORTEX_M3_RESET_SYSRESETREQ:
2135 reset_config = "sysresetreq";
2136 break;
2137
2138 case CORTEX_M3_RESET_VECTRESET:
2139 reset_config = "vectreset";
2140 break;
2141
2142 default:
2143 reset_config = "unknown";
2144 break;
2145 }
2146
2147 command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2148
2149 return ERROR_OK;
2150 }
2151
2152 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2153 {
2154 .name = "maskisr",
2155 .handler = handle_cortex_m3_mask_interrupts_command,
2156 .mode = COMMAND_EXEC,
2157 .help = "mask cortex_m3 interrupts",
2158 .usage = "['auto'|'on'|'off']",
2159 },
2160 {
2161 .name = "vector_catch",
2162 .handler = handle_cortex_m3_vector_catch_command,
2163 .mode = COMMAND_EXEC,
2164 .help = "configure hardware vectors to trigger debug entry",
2165 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2166 },
2167 {
2168 .name = "reset_config",
2169 .handler = handle_cortex_m3_reset_config_command,
2170 .mode = COMMAND_ANY,
2171 .help = "configure software reset handling",
2172 .usage = "['srst'|'sysresetreq'|'vectreset']",
2173 },
2174 COMMAND_REGISTRATION_DONE
2175 };
2176 static const struct command_registration cortex_m3_command_handlers[] = {
2177 {
2178 .chain = armv7m_command_handlers,
2179 },
2180 {
2181 .name = "cortex_m3",
2182 .mode = COMMAND_EXEC,
2183 .help = "Cortex-M3 command group",
2184 .usage = "",
2185 .chain = cortex_m3_exec_command_handlers,
2186 },
2187 COMMAND_REGISTRATION_DONE
2188 };
2189
2190 struct target_type cortexm3_target = {
2191 .name = "cortex_m3",
2192
2193 .poll = cortex_m3_poll,
2194 .arch_state = armv7m_arch_state,
2195
2196 .target_request_data = cortex_m3_target_request_data,
2197
2198 .halt = cortex_m3_halt,
2199 .resume = cortex_m3_resume,
2200 .step = cortex_m3_step,
2201
2202 .assert_reset = cortex_m3_assert_reset,
2203 .deassert_reset = cortex_m3_deassert_reset,
2204 .soft_reset_halt = cortex_m3_soft_reset_halt,
2205
2206 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2207
2208 .read_memory = cortex_m3_read_memory,
2209 .write_memory = cortex_m3_write_memory,
2210 .bulk_write_memory = cortex_m3_bulk_write_memory,
2211 .checksum_memory = armv7m_checksum_memory,
2212 .blank_check_memory = armv7m_blank_check_memory,
2213
2214 .run_algorithm = armv7m_run_algorithm,
2215 .start_algorithm = armv7m_start_algorithm,
2216 .wait_algorithm = armv7m_wait_algorithm,
2217
2218 .add_breakpoint = cortex_m3_add_breakpoint,
2219 .remove_breakpoint = cortex_m3_remove_breakpoint,
2220 .add_watchpoint = cortex_m3_add_watchpoint,
2221 .remove_watchpoint = cortex_m3_remove_watchpoint,
2222
2223 .commands = cortex_m3_command_handlers,
2224 .target_create = cortex_m3_target_create,
2225 .init_target = cortex_m3_init_target,
2226 .examine = cortex_m3_examine,
2227 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)