Fix incorrect comment
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109
110 static struct target_type *target_types[] = {
111 &arm7tdmi_target,
112 &arm9tdmi_target,
113 &arm920t_target,
114 &arm720t_target,
115 &arm966e_target,
116 &arm946e_target,
117 &arm926ejs_target,
118 &fa526_target,
119 &feroceon_target,
120 &dragonite_target,
121 &xscale_target,
122 &cortexm_target,
123 &cortexa_target,
124 &cortexr4_target,
125 &arm11_target,
126 &ls1_sap_target,
127 &mips_m4k_target,
128 &avr_target,
129 &dsp563xx_target,
130 &dsp5680xx_target,
131 &testee_target,
132 &avr32_ap7k_target,
133 &hla_target,
134 &nds32_v2_target,
135 &nds32_v3_target,
136 &nds32_v3m_target,
137 &or1k_target,
138 &quark_x10xx_target,
139 &quark_d20xx_target,
140 &stm8_target,
141 #if BUILD_TARGET64
142 &aarch64_target,
143 #endif
144 NULL,
145 };
146
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
153
154 static const Jim_Nvp nvp_assert[] = {
155 { .name = "assert", NVP_ASSERT },
156 { .name = "deassert", NVP_DEASSERT },
157 { .name = "T", NVP_ASSERT },
158 { .name = "F", NVP_DEASSERT },
159 { .name = "t", NVP_ASSERT },
160 { .name = "f", NVP_DEASSERT },
161 { .name = NULL, .value = -1 }
162 };
163
164 static const Jim_Nvp nvp_error_target[] = {
165 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
171 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
174 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176 { .value = -1, .name = NULL }
177 };
178
179 static const char *target_strerror_safe(int err)
180 {
181 const Jim_Nvp *n;
182
183 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184 if (n->name == NULL)
185 return "unknown";
186 else
187 return n->name;
188 }
189
190 static const Jim_Nvp nvp_target_event[] = {
191
192 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193 { .value = TARGET_EVENT_HALTED, .name = "halted" },
194 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
197
198 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
200
201 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
202 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
203 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
204 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
205 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
208 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
209
210 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
211 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
212
213 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
214 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
215
216 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
217 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
218
219 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
220 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
221
222 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
223 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
224
225 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
226
227 { .name = NULL, .value = -1 }
228 };
229
230 static const Jim_Nvp nvp_target_state[] = {
231 { .name = "unknown", .value = TARGET_UNKNOWN },
232 { .name = "running", .value = TARGET_RUNNING },
233 { .name = "halted", .value = TARGET_HALTED },
234 { .name = "reset", .value = TARGET_RESET },
235 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
236 { .name = NULL, .value = -1 },
237 };
238
239 static const Jim_Nvp nvp_target_debug_reason[] = {
240 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
241 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
242 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
243 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
244 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
245 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
246 { .name = "program-exit" , .value = DBG_REASON_EXIT },
247 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
248 { .name = NULL, .value = -1 },
249 };
250
251 static const Jim_Nvp nvp_target_endian[] = {
252 { .name = "big", .value = TARGET_BIG_ENDIAN },
253 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
254 { .name = "be", .value = TARGET_BIG_ENDIAN },
255 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
256 { .name = NULL, .value = -1 },
257 };
258
259 static const Jim_Nvp nvp_reset_modes[] = {
260 { .name = "unknown", .value = RESET_UNKNOWN },
261 { .name = "run" , .value = RESET_RUN },
262 { .name = "halt" , .value = RESET_HALT },
263 { .name = "init" , .value = RESET_INIT },
264 { .name = NULL , .value = -1 },
265 };
266
267 const char *debug_reason_name(struct target *t)
268 {
269 const char *cp;
270
271 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
272 t->debug_reason)->name;
273 if (!cp) {
274 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
275 cp = "(*BUG*unknown*BUG*)";
276 }
277 return cp;
278 }
279
280 const char *target_state_name(struct target *t)
281 {
282 const char *cp;
283 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
284 if (!cp) {
285 LOG_ERROR("Invalid target state: %d", (int)(t->state));
286 cp = "(*BUG*unknown*BUG*)";
287 }
288
289 if (!target_was_examined(t) && t->defer_examine)
290 cp = "examine deferred";
291
292 return cp;
293 }
294
295 const char *target_event_name(enum target_event event)
296 {
297 const char *cp;
298 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
299 if (!cp) {
300 LOG_ERROR("Invalid target event: %d", (int)(event));
301 cp = "(*BUG*unknown*BUG*)";
302 }
303 return cp;
304 }
305
306 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
307 {
308 const char *cp;
309 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
310 if (!cp) {
311 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
312 cp = "(*BUG*unknown*BUG*)";
313 }
314 return cp;
315 }
316
317 /* determine the number of the new target */
318 static int new_target_number(void)
319 {
320 struct target *t;
321 int x;
322
323 /* number is 0 based */
324 x = -1;
325 t = all_targets;
326 while (t) {
327 if (x < t->target_number)
328 x = t->target_number;
329 t = t->next;
330 }
331 return x + 1;
332 }
333
334 /* read a uint64_t from a buffer in target memory endianness */
335 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
336 {
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 return le_to_h_u64(buffer);
339 else
340 return be_to_h_u64(buffer);
341 }
342
343 /* read a uint32_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
345 {
346 if (target->endianness == TARGET_LITTLE_ENDIAN)
347 return le_to_h_u32(buffer);
348 else
349 return be_to_h_u32(buffer);
350 }
351
352 /* read a uint24_t from a buffer in target memory endianness */
353 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
354 {
355 if (target->endianness == TARGET_LITTLE_ENDIAN)
356 return le_to_h_u24(buffer);
357 else
358 return be_to_h_u24(buffer);
359 }
360
361 /* read a uint16_t from a buffer in target memory endianness */
362 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
363 {
364 if (target->endianness == TARGET_LITTLE_ENDIAN)
365 return le_to_h_u16(buffer);
366 else
367 return be_to_h_u16(buffer);
368 }
369
370 /* read a uint8_t from a buffer in target memory endianness */
371 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
372 {
373 return *buffer & 0x0ff;
374 }
375
376 /* write a uint64_t to a buffer in target memory endianness */
377 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
378 {
379 if (target->endianness == TARGET_LITTLE_ENDIAN)
380 h_u64_to_le(buffer, value);
381 else
382 h_u64_to_be(buffer, value);
383 }
384
385 /* write a uint32_t to a buffer in target memory endianness */
386 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
387 {
388 if (target->endianness == TARGET_LITTLE_ENDIAN)
389 h_u32_to_le(buffer, value);
390 else
391 h_u32_to_be(buffer, value);
392 }
393
394 /* write a uint24_t to a buffer in target memory endianness */
395 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
396 {
397 if (target->endianness == TARGET_LITTLE_ENDIAN)
398 h_u24_to_le(buffer, value);
399 else
400 h_u24_to_be(buffer, value);
401 }
402
403 /* write a uint16_t to a buffer in target memory endianness */
404 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
405 {
406 if (target->endianness == TARGET_LITTLE_ENDIAN)
407 h_u16_to_le(buffer, value);
408 else
409 h_u16_to_be(buffer, value);
410 }
411
412 /* write a uint8_t to a buffer in target memory endianness */
413 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
414 {
415 *buffer = value;
416 }
417
418 /* write a uint64_t array to a buffer in target memory endianness */
419 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
420 {
421 uint32_t i;
422 for (i = 0; i < count; i++)
423 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
424 }
425
426 /* write a uint32_t array to a buffer in target memory endianness */
427 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
428 {
429 uint32_t i;
430 for (i = 0; i < count; i++)
431 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
432 }
433
434 /* write a uint16_t array to a buffer in target memory endianness */
435 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
436 {
437 uint32_t i;
438 for (i = 0; i < count; i++)
439 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
440 }
441
442 /* write a uint64_t array to a buffer in target memory endianness */
443 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
444 {
445 uint32_t i;
446 for (i = 0; i < count; i++)
447 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
448 }
449
450 /* write a uint32_t array to a buffer in target memory endianness */
451 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
452 {
453 uint32_t i;
454 for (i = 0; i < count; i++)
455 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
456 }
457
458 /* write a uint16_t array to a buffer in target memory endianness */
459 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
460 {
461 uint32_t i;
462 for (i = 0; i < count; i++)
463 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
464 }
465
466 /* return a pointer to a configured target; id is name or number */
467 struct target *get_target(const char *id)
468 {
469 struct target *target;
470
471 /* try as tcltarget name */
472 for (target = all_targets; target; target = target->next) {
473 if (target_name(target) == NULL)
474 continue;
475 if (strcmp(id, target_name(target)) == 0)
476 return target;
477 }
478
479 /* It's OK to remove this fallback sometime after August 2010 or so */
480
481 /* no match, try as number */
482 unsigned num;
483 if (parse_uint(id, &num) != ERROR_OK)
484 return NULL;
485
486 for (target = all_targets; target; target = target->next) {
487 if (target->target_number == (int)num) {
488 LOG_WARNING("use '%s' as target identifier, not '%u'",
489 target_name(target), num);
490 return target;
491 }
492 }
493
494 return NULL;
495 }
496
497 /* returns a pointer to the n-th configured target */
498 struct target *get_target_by_num(int num)
499 {
500 struct target *target = all_targets;
501
502 while (target) {
503 if (target->target_number == num)
504 return target;
505 target = target->next;
506 }
507
508 return NULL;
509 }
510
511 struct target *get_current_target(struct command_context *cmd_ctx)
512 {
513 struct target *target = get_target_by_num(cmd_ctx->current_target);
514
515 if (target == NULL) {
516 LOG_ERROR("BUG: current_target out of bounds");
517 exit(-1);
518 }
519
520 return target;
521 }
522
523 int target_poll(struct target *target)
524 {
525 int retval;
526
527 /* We can't poll until after examine */
528 if (!target_was_examined(target)) {
529 /* Fail silently lest we pollute the log */
530 return ERROR_FAIL;
531 }
532
533 retval = target->type->poll(target);
534 if (retval != ERROR_OK)
535 return retval;
536
537 if (target->halt_issued) {
538 if (target->state == TARGET_HALTED)
539 target->halt_issued = false;
540 else {
541 int64_t t = timeval_ms() - target->halt_issued_time;
542 if (t > DEFAULT_HALT_TIMEOUT) {
543 target->halt_issued = false;
544 LOG_INFO("Halt timed out, wake up GDB.");
545 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
546 }
547 }
548 }
549
550 return ERROR_OK;
551 }
552
553 int target_halt(struct target *target)
554 {
555 int retval;
556 /* We can't poll until after examine */
557 if (!target_was_examined(target)) {
558 LOG_ERROR("Target not examined yet");
559 return ERROR_FAIL;
560 }
561
562 retval = target->type->halt(target);
563 if (retval != ERROR_OK)
564 return retval;
565
566 target->halt_issued = true;
567 target->halt_issued_time = timeval_ms();
568
569 return ERROR_OK;
570 }
571
572 /**
573 * Make the target (re)start executing using its saved execution
574 * context (possibly with some modifications).
575 *
576 * @param target Which target should start executing.
577 * @param current True to use the target's saved program counter instead
578 * of the address parameter
579 * @param address Optionally used as the program counter.
580 * @param handle_breakpoints True iff breakpoints at the resumption PC
581 * should be skipped. (For example, maybe execution was stopped by
582 * such a breakpoint, in which case it would be counterprodutive to
583 * let it re-trigger.
584 * @param debug_execution False if all working areas allocated by OpenOCD
585 * should be released and/or restored to their original contents.
586 * (This would for example be true to run some downloaded "helper"
587 * algorithm code, which resides in one such working buffer and uses
588 * another for data storage.)
589 *
590 * @todo Resolve the ambiguity about what the "debug_execution" flag
591 * signifies. For example, Target implementations don't agree on how
592 * it relates to invalidation of the register cache, or to whether
593 * breakpoints and watchpoints should be enabled. (It would seem wrong
594 * to enable breakpoints when running downloaded "helper" algorithms
595 * (debug_execution true), since the breakpoints would be set to match
596 * target firmware being debugged, not the helper algorithm.... and
597 * enabling them could cause such helpers to malfunction (for example,
598 * by overwriting data with a breakpoint instruction. On the other
599 * hand the infrastructure for running such helpers might use this
600 * procedure but rely on hardware breakpoint to detect termination.)
601 */
602 int target_resume(struct target *target, int current, target_addr_t address,
603 int handle_breakpoints, int debug_execution)
604 {
605 int retval;
606
607 /* We can't poll until after examine */
608 if (!target_was_examined(target)) {
609 LOG_ERROR("Target not examined yet");
610 return ERROR_FAIL;
611 }
612
613 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
614
615 /* note that resume *must* be asynchronous. The CPU can halt before
616 * we poll. The CPU can even halt at the current PC as a result of
617 * a software breakpoint being inserted by (a bug?) the application.
618 */
619 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
620 if (retval != ERROR_OK)
621 return retval;
622
623 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
624
625 return retval;
626 }
627
628 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
629 {
630 char buf[100];
631 int retval;
632 Jim_Nvp *n;
633 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
634 if (n->name == NULL) {
635 LOG_ERROR("invalid reset mode");
636 return ERROR_FAIL;
637 }
638
639 struct target *target;
640 for (target = all_targets; target; target = target->next)
641 target_call_reset_callbacks(target, reset_mode);
642
643 /* disable polling during reset to make reset event scripts
644 * more predictable, i.e. dr/irscan & pathmove in events will
645 * not have JTAG operations injected into the middle of a sequence.
646 */
647 bool save_poll = jtag_poll_get_enabled();
648
649 jtag_poll_set_enabled(false);
650
651 sprintf(buf, "ocd_process_reset %s", n->name);
652 retval = Jim_Eval(cmd_ctx->interp, buf);
653
654 jtag_poll_set_enabled(save_poll);
655
656 if (retval != JIM_OK) {
657 Jim_MakeErrorMessage(cmd_ctx->interp);
658 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
659 return ERROR_FAIL;
660 }
661
662 /* We want any events to be processed before the prompt */
663 retval = target_call_timer_callbacks_now();
664
665 for (target = all_targets; target; target = target->next) {
666 target->type->check_reset(target);
667 target->running_alg = false;
668 }
669
670 return retval;
671 }
672
673 static int identity_virt2phys(struct target *target,
674 target_addr_t virtual, target_addr_t *physical)
675 {
676 *physical = virtual;
677 return ERROR_OK;
678 }
679
680 static int no_mmu(struct target *target, int *enabled)
681 {
682 *enabled = 0;
683 return ERROR_OK;
684 }
685
686 static int default_examine(struct target *target)
687 {
688 target_set_examined(target);
689 return ERROR_OK;
690 }
691
692 /* no check by default */
693 static int default_check_reset(struct target *target)
694 {
695 return ERROR_OK;
696 }
697
698 int target_examine_one(struct target *target)
699 {
700 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
701
702 int retval = target->type->examine(target);
703 if (retval != ERROR_OK)
704 return retval;
705
706 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
707
708 return ERROR_OK;
709 }
710
711 static int jtag_enable_callback(enum jtag_event event, void *priv)
712 {
713 struct target *target = priv;
714
715 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
716 return ERROR_OK;
717
718 jtag_unregister_event_callback(jtag_enable_callback, target);
719
720 return target_examine_one(target);
721 }
722
723 /* Targets that correctly implement init + examine, i.e.
724 * no communication with target during init:
725 *
726 * XScale
727 */
728 int target_examine(void)
729 {
730 int retval = ERROR_OK;
731 struct target *target;
732
733 for (target = all_targets; target; target = target->next) {
734 /* defer examination, but don't skip it */
735 if (!target->tap->enabled) {
736 jtag_register_event_callback(jtag_enable_callback,
737 target);
738 continue;
739 }
740
741 if (target->defer_examine)
742 continue;
743
744 retval = target_examine_one(target);
745 if (retval != ERROR_OK)
746 return retval;
747 }
748 return retval;
749 }
750
751 const char *target_type_name(struct target *target)
752 {
753 return target->type->name;
754 }
755
756 static int target_soft_reset_halt(struct target *target)
757 {
758 if (!target_was_examined(target)) {
759 LOG_ERROR("Target not examined yet");
760 return ERROR_FAIL;
761 }
762 if (!target->type->soft_reset_halt) {
763 LOG_ERROR("Target %s does not support soft_reset_halt",
764 target_name(target));
765 return ERROR_FAIL;
766 }
767 return target->type->soft_reset_halt(target);
768 }
769
770 /**
771 * Downloads a target-specific native code algorithm to the target,
772 * and executes it. * Note that some targets may need to set up, enable,
773 * and tear down a breakpoint (hard or * soft) to detect algorithm
774 * termination, while others may support lower overhead schemes where
775 * soft breakpoints embedded in the algorithm automatically terminate the
776 * algorithm.
777 *
778 * @param target used to run the algorithm
779 * @param arch_info target-specific description of the algorithm.
780 */
781 int target_run_algorithm(struct target *target,
782 int num_mem_params, struct mem_param *mem_params,
783 int num_reg_params, struct reg_param *reg_param,
784 uint32_t entry_point, uint32_t exit_point,
785 int timeout_ms, void *arch_info)
786 {
787 int retval = ERROR_FAIL;
788
789 if (!target_was_examined(target)) {
790 LOG_ERROR("Target not examined yet");
791 goto done;
792 }
793 if (!target->type->run_algorithm) {
794 LOG_ERROR("Target type '%s' does not support %s",
795 target_type_name(target), __func__);
796 goto done;
797 }
798
799 target->running_alg = true;
800 retval = target->type->run_algorithm(target,
801 num_mem_params, mem_params,
802 num_reg_params, reg_param,
803 entry_point, exit_point, timeout_ms, arch_info);
804 target->running_alg = false;
805
806 done:
807 return retval;
808 }
809
810 /**
811 * Executes a target-specific native code algorithm and leaves it running.
812 *
813 * @param target used to run the algorithm
814 * @param arch_info target-specific description of the algorithm.
815 */
816 int target_start_algorithm(struct target *target,
817 int num_mem_params, struct mem_param *mem_params,
818 int num_reg_params, struct reg_param *reg_params,
819 uint32_t entry_point, uint32_t exit_point,
820 void *arch_info)
821 {
822 int retval = ERROR_FAIL;
823
824 if (!target_was_examined(target)) {
825 LOG_ERROR("Target not examined yet");
826 goto done;
827 }
828 if (!target->type->start_algorithm) {
829 LOG_ERROR("Target type '%s' does not support %s",
830 target_type_name(target), __func__);
831 goto done;
832 }
833 if (target->running_alg) {
834 LOG_ERROR("Target is already running an algorithm");
835 goto done;
836 }
837
838 target->running_alg = true;
839 retval = target->type->start_algorithm(target,
840 num_mem_params, mem_params,
841 num_reg_params, reg_params,
842 entry_point, exit_point, arch_info);
843
844 done:
845 return retval;
846 }
847
848 /**
849 * Waits for an algorithm started with target_start_algorithm() to complete.
850 *
851 * @param target used to run the algorithm
852 * @param arch_info target-specific description of the algorithm.
853 */
854 int target_wait_algorithm(struct target *target,
855 int num_mem_params, struct mem_param *mem_params,
856 int num_reg_params, struct reg_param *reg_params,
857 uint32_t exit_point, int timeout_ms,
858 void *arch_info)
859 {
860 int retval = ERROR_FAIL;
861
862 if (!target->type->wait_algorithm) {
863 LOG_ERROR("Target type '%s' does not support %s",
864 target_type_name(target), __func__);
865 goto done;
866 }
867 if (!target->running_alg) {
868 LOG_ERROR("Target is not running an algorithm");
869 goto done;
870 }
871
872 retval = target->type->wait_algorithm(target,
873 num_mem_params, mem_params,
874 num_reg_params, reg_params,
875 exit_point, timeout_ms, arch_info);
876 if (retval != ERROR_TARGET_TIMEOUT)
877 target->running_alg = false;
878
879 done:
880 return retval;
881 }
882
883 /**
884 * Streams data to a circular buffer on target intended for consumption by code
885 * running asynchronously on target.
886 *
887 * This is intended for applications where target-specific native code runs
888 * on the target, receives data from the circular buffer, does something with
889 * it (most likely writing it to a flash memory), and advances the circular
890 * buffer pointer.
891 *
892 * This assumes that the helper algorithm has already been loaded to the target,
893 * but has not been started yet. Given memory and register parameters are passed
894 * to the algorithm.
895 *
896 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
897 * following format:
898 *
899 * [buffer_start + 0, buffer_start + 4):
900 * Write Pointer address (aka head). Written and updated by this
901 * routine when new data is written to the circular buffer.
902 * [buffer_start + 4, buffer_start + 8):
903 * Read Pointer address (aka tail). Updated by code running on the
904 * target after it consumes data.
905 * [buffer_start + 8, buffer_start + buffer_size):
906 * Circular buffer contents.
907 *
908 * See contrib/loaders/flash/stm32f1x.S for an example.
909 *
910 * @param target used to run the algorithm
911 * @param buffer address on the host where data to be sent is located
912 * @param count number of blocks to send
913 * @param block_size size in bytes of each block
914 * @param num_mem_params count of memory-based params to pass to algorithm
915 * @param mem_params memory-based params to pass to algorithm
916 * @param num_reg_params count of register-based params to pass to algorithm
917 * @param reg_params memory-based params to pass to algorithm
918 * @param buffer_start address on the target of the circular buffer structure
919 * @param buffer_size size of the circular buffer structure
920 * @param entry_point address on the target to execute to start the algorithm
921 * @param exit_point address at which to set a breakpoint to catch the
922 * end of the algorithm; can be 0 if target triggers a breakpoint itself
923 */
924
925 int target_run_flash_async_algorithm(struct target *target,
926 const uint8_t *buffer, uint32_t count, int block_size,
927 int num_mem_params, struct mem_param *mem_params,
928 int num_reg_params, struct reg_param *reg_params,
929 uint32_t buffer_start, uint32_t buffer_size,
930 uint32_t entry_point, uint32_t exit_point, void *arch_info)
931 {
932 int retval;
933 int timeout = 0;
934
935 const uint8_t *buffer_orig = buffer;
936
937 /* Set up working area. First word is write pointer, second word is read pointer,
938 * rest is fifo data area. */
939 uint32_t wp_addr = buffer_start;
940 uint32_t rp_addr = buffer_start + 4;
941 uint32_t fifo_start_addr = buffer_start + 8;
942 uint32_t fifo_end_addr = buffer_start + buffer_size;
943
944 uint32_t wp = fifo_start_addr;
945 uint32_t rp = fifo_start_addr;
946
947 /* validate block_size is 2^n */
948 assert(!block_size || !(block_size & (block_size - 1)));
949
950 retval = target_write_u32(target, wp_addr, wp);
951 if (retval != ERROR_OK)
952 return retval;
953 retval = target_write_u32(target, rp_addr, rp);
954 if (retval != ERROR_OK)
955 return retval;
956
957 /* Start up algorithm on target and let it idle while writing the first chunk */
958 retval = target_start_algorithm(target, num_mem_params, mem_params,
959 num_reg_params, reg_params,
960 entry_point,
961 exit_point,
962 arch_info);
963
964 if (retval != ERROR_OK) {
965 LOG_ERROR("error starting target flash write algorithm");
966 return retval;
967 }
968
969 while (count > 0) {
970
971 retval = target_read_u32(target, rp_addr, &rp);
972 if (retval != ERROR_OK) {
973 LOG_ERROR("failed to get read pointer");
974 break;
975 }
976
977 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
978 (size_t) (buffer - buffer_orig), count, wp, rp);
979
980 if (rp == 0) {
981 LOG_ERROR("flash write algorithm aborted by target");
982 retval = ERROR_FLASH_OPERATION_FAILED;
983 break;
984 }
985
986 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
987 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
988 break;
989 }
990
991 /* Count the number of bytes available in the fifo without
992 * crossing the wrap around. Make sure to not fill it completely,
993 * because that would make wp == rp and that's the empty condition. */
994 uint32_t thisrun_bytes;
995 if (rp > wp)
996 thisrun_bytes = rp - wp - block_size;
997 else if (rp > fifo_start_addr)
998 thisrun_bytes = fifo_end_addr - wp;
999 else
1000 thisrun_bytes = fifo_end_addr - wp - block_size;
1001
1002 if (thisrun_bytes == 0) {
1003 /* Throttle polling a bit if transfer is (much) faster than flash
1004 * programming. The exact delay shouldn't matter as long as it's
1005 * less than buffer size / flash speed. This is very unlikely to
1006 * run when using high latency connections such as USB. */
1007 alive_sleep(10);
1008
1009 /* to stop an infinite loop on some targets check and increment a timeout
1010 * this issue was observed on a stellaris using the new ICDI interface */
1011 if (timeout++ >= 500) {
1012 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1013 return ERROR_FLASH_OPERATION_FAILED;
1014 }
1015 continue;
1016 }
1017
1018 /* reset our timeout */
1019 timeout = 0;
1020
1021 /* Limit to the amount of data we actually want to write */
1022 if (thisrun_bytes > count * block_size)
1023 thisrun_bytes = count * block_size;
1024
1025 /* Write data to fifo */
1026 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1027 if (retval != ERROR_OK)
1028 break;
1029
1030 /* Update counters and wrap write pointer */
1031 buffer += thisrun_bytes;
1032 count -= thisrun_bytes / block_size;
1033 wp += thisrun_bytes;
1034 if (wp >= fifo_end_addr)
1035 wp = fifo_start_addr;
1036
1037 /* Store updated write pointer to target */
1038 retval = target_write_u32(target, wp_addr, wp);
1039 if (retval != ERROR_OK)
1040 break;
1041 }
1042
1043 if (retval != ERROR_OK) {
1044 /* abort flash write algorithm on target */
1045 target_write_u32(target, wp_addr, 0);
1046 }
1047
1048 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1049 num_reg_params, reg_params,
1050 exit_point,
1051 10000,
1052 arch_info);
1053
1054 if (retval2 != ERROR_OK) {
1055 LOG_ERROR("error waiting for target flash write algorithm");
1056 retval = retval2;
1057 }
1058
1059 if (retval == ERROR_OK) {
1060 /* check if algorithm set rp = 0 after fifo writer loop finished */
1061 retval = target_read_u32(target, rp_addr, &rp);
1062 if (retval == ERROR_OK && rp == 0) {
1063 LOG_ERROR("flash write algorithm aborted by target");
1064 retval = ERROR_FLASH_OPERATION_FAILED;
1065 }
1066 }
1067
1068 return retval;
1069 }
1070
1071 int target_read_memory(struct target *target,
1072 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1073 {
1074 if (!target_was_examined(target)) {
1075 LOG_ERROR("Target not examined yet");
1076 return ERROR_FAIL;
1077 }
1078 if (!target->type->read_memory) {
1079 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1080 return ERROR_FAIL;
1081 }
1082 return target->type->read_memory(target, address, size, count, buffer);
1083 }
1084
1085 int target_read_phys_memory(struct target *target,
1086 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1087 {
1088 if (!target_was_examined(target)) {
1089 LOG_ERROR("Target not examined yet");
1090 return ERROR_FAIL;
1091 }
1092 if (!target->type->read_phys_memory) {
1093 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1094 return ERROR_FAIL;
1095 }
1096 return target->type->read_phys_memory(target, address, size, count, buffer);
1097 }
1098
1099 int target_write_memory(struct target *target,
1100 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1101 {
1102 if (!target_was_examined(target)) {
1103 LOG_ERROR("Target not examined yet");
1104 return ERROR_FAIL;
1105 }
1106 if (!target->type->write_memory) {
1107 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1108 return ERROR_FAIL;
1109 }
1110 return target->type->write_memory(target, address, size, count, buffer);
1111 }
1112
1113 int target_write_phys_memory(struct target *target,
1114 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1115 {
1116 if (!target_was_examined(target)) {
1117 LOG_ERROR("Target not examined yet");
1118 return ERROR_FAIL;
1119 }
1120 if (!target->type->write_phys_memory) {
1121 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1122 return ERROR_FAIL;
1123 }
1124 return target->type->write_phys_memory(target, address, size, count, buffer);
1125 }
1126
1127 int target_add_breakpoint(struct target *target,
1128 struct breakpoint *breakpoint)
1129 {
1130 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1131 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1132 return ERROR_TARGET_NOT_HALTED;
1133 }
1134 return target->type->add_breakpoint(target, breakpoint);
1135 }
1136
1137 int target_add_context_breakpoint(struct target *target,
1138 struct breakpoint *breakpoint)
1139 {
1140 if (target->state != TARGET_HALTED) {
1141 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1142 return ERROR_TARGET_NOT_HALTED;
1143 }
1144 return target->type->add_context_breakpoint(target, breakpoint);
1145 }
1146
1147 int target_add_hybrid_breakpoint(struct target *target,
1148 struct breakpoint *breakpoint)
1149 {
1150 if (target->state != TARGET_HALTED) {
1151 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1152 return ERROR_TARGET_NOT_HALTED;
1153 }
1154 return target->type->add_hybrid_breakpoint(target, breakpoint);
1155 }
1156
1157 int target_remove_breakpoint(struct target *target,
1158 struct breakpoint *breakpoint)
1159 {
1160 return target->type->remove_breakpoint(target, breakpoint);
1161 }
1162
1163 int target_add_watchpoint(struct target *target,
1164 struct watchpoint *watchpoint)
1165 {
1166 if (target->state != TARGET_HALTED) {
1167 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1168 return ERROR_TARGET_NOT_HALTED;
1169 }
1170 return target->type->add_watchpoint(target, watchpoint);
1171 }
1172 int target_remove_watchpoint(struct target *target,
1173 struct watchpoint *watchpoint)
1174 {
1175 return target->type->remove_watchpoint(target, watchpoint);
1176 }
1177 int target_hit_watchpoint(struct target *target,
1178 struct watchpoint **hit_watchpoint)
1179 {
1180 if (target->state != TARGET_HALTED) {
1181 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1182 return ERROR_TARGET_NOT_HALTED;
1183 }
1184
1185 if (target->type->hit_watchpoint == NULL) {
1186 /* For backward compatible, if hit_watchpoint is not implemented,
1187 * return ERROR_FAIL such that gdb_server will not take the nonsense
1188 * information. */
1189 return ERROR_FAIL;
1190 }
1191
1192 return target->type->hit_watchpoint(target, hit_watchpoint);
1193 }
1194
1195 int target_get_gdb_reg_list(struct target *target,
1196 struct reg **reg_list[], int *reg_list_size,
1197 enum target_register_class reg_class)
1198 {
1199 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1200 }
1201 int target_step(struct target *target,
1202 int current, target_addr_t address, int handle_breakpoints)
1203 {
1204 return target->type->step(target, current, address, handle_breakpoints);
1205 }
1206
1207 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1208 {
1209 if (target->state != TARGET_HALTED) {
1210 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1211 return ERROR_TARGET_NOT_HALTED;
1212 }
1213 return target->type->get_gdb_fileio_info(target, fileio_info);
1214 }
1215
1216 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1217 {
1218 if (target->state != TARGET_HALTED) {
1219 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1220 return ERROR_TARGET_NOT_HALTED;
1221 }
1222 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1223 }
1224
1225 int target_profiling(struct target *target, uint32_t *samples,
1226 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1227 {
1228 if (target->state != TARGET_HALTED) {
1229 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1230 return ERROR_TARGET_NOT_HALTED;
1231 }
1232 return target->type->profiling(target, samples, max_num_samples,
1233 num_samples, seconds);
1234 }
1235
1236 /**
1237 * Reset the @c examined flag for the given target.
1238 * Pure paranoia -- targets are zeroed on allocation.
1239 */
1240 static void target_reset_examined(struct target *target)
1241 {
1242 target->examined = false;
1243 }
1244
1245 static int handle_target(void *priv);
1246
1247 static int target_init_one(struct command_context *cmd_ctx,
1248 struct target *target)
1249 {
1250 target_reset_examined(target);
1251
1252 struct target_type *type = target->type;
1253 if (type->examine == NULL)
1254 type->examine = default_examine;
1255
1256 if (type->check_reset == NULL)
1257 type->check_reset = default_check_reset;
1258
1259 assert(type->init_target != NULL);
1260
1261 int retval = type->init_target(cmd_ctx, target);
1262 if (ERROR_OK != retval) {
1263 LOG_ERROR("target '%s' init failed", target_name(target));
1264 return retval;
1265 }
1266
1267 /* Sanity-check MMU support ... stub in what we must, to help
1268 * implement it in stages, but warn if we need to do so.
1269 */
1270 if (type->mmu) {
1271 if (type->virt2phys == NULL) {
1272 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1273 type->virt2phys = identity_virt2phys;
1274 }
1275 } else {
1276 /* Make sure no-MMU targets all behave the same: make no
1277 * distinction between physical and virtual addresses, and
1278 * ensure that virt2phys() is always an identity mapping.
1279 */
1280 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1281 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1282
1283 type->mmu = no_mmu;
1284 type->write_phys_memory = type->write_memory;
1285 type->read_phys_memory = type->read_memory;
1286 type->virt2phys = identity_virt2phys;
1287 }
1288
1289 if (target->type->read_buffer == NULL)
1290 target->type->read_buffer = target_read_buffer_default;
1291
1292 if (target->type->write_buffer == NULL)
1293 target->type->write_buffer = target_write_buffer_default;
1294
1295 if (target->type->get_gdb_fileio_info == NULL)
1296 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1297
1298 if (target->type->gdb_fileio_end == NULL)
1299 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1300
1301 if (target->type->profiling == NULL)
1302 target->type->profiling = target_profiling_default;
1303
1304 return ERROR_OK;
1305 }
1306
1307 static int target_init(struct command_context *cmd_ctx)
1308 {
1309 struct target *target;
1310 int retval;
1311
1312 for (target = all_targets; target; target = target->next) {
1313 retval = target_init_one(cmd_ctx, target);
1314 if (ERROR_OK != retval)
1315 return retval;
1316 }
1317
1318 if (!all_targets)
1319 return ERROR_OK;
1320
1321 retval = target_register_user_commands(cmd_ctx);
1322 if (ERROR_OK != retval)
1323 return retval;
1324
1325 retval = target_register_timer_callback(&handle_target,
1326 polling_interval, 1, cmd_ctx->interp);
1327 if (ERROR_OK != retval)
1328 return retval;
1329
1330 return ERROR_OK;
1331 }
1332
1333 COMMAND_HANDLER(handle_target_init_command)
1334 {
1335 int retval;
1336
1337 if (CMD_ARGC != 0)
1338 return ERROR_COMMAND_SYNTAX_ERROR;
1339
1340 static bool target_initialized;
1341 if (target_initialized) {
1342 LOG_INFO("'target init' has already been called");
1343 return ERROR_OK;
1344 }
1345 target_initialized = true;
1346
1347 retval = command_run_line(CMD_CTX, "init_targets");
1348 if (ERROR_OK != retval)
1349 return retval;
1350
1351 retval = command_run_line(CMD_CTX, "init_target_events");
1352 if (ERROR_OK != retval)
1353 return retval;
1354
1355 retval = command_run_line(CMD_CTX, "init_board");
1356 if (ERROR_OK != retval)
1357 return retval;
1358
1359 LOG_DEBUG("Initializing targets...");
1360 return target_init(CMD_CTX);
1361 }
1362
1363 int target_register_event_callback(int (*callback)(struct target *target,
1364 enum target_event event, void *priv), void *priv)
1365 {
1366 struct target_event_callback **callbacks_p = &target_event_callbacks;
1367
1368 if (callback == NULL)
1369 return ERROR_COMMAND_SYNTAX_ERROR;
1370
1371 if (*callbacks_p) {
1372 while ((*callbacks_p)->next)
1373 callbacks_p = &((*callbacks_p)->next);
1374 callbacks_p = &((*callbacks_p)->next);
1375 }
1376
1377 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1378 (*callbacks_p)->callback = callback;
1379 (*callbacks_p)->priv = priv;
1380 (*callbacks_p)->next = NULL;
1381
1382 return ERROR_OK;
1383 }
1384
1385 int target_register_reset_callback(int (*callback)(struct target *target,
1386 enum target_reset_mode reset_mode, void *priv), void *priv)
1387 {
1388 struct target_reset_callback *entry;
1389
1390 if (callback == NULL)
1391 return ERROR_COMMAND_SYNTAX_ERROR;
1392
1393 entry = malloc(sizeof(struct target_reset_callback));
1394 if (entry == NULL) {
1395 LOG_ERROR("error allocating buffer for reset callback entry");
1396 return ERROR_COMMAND_SYNTAX_ERROR;
1397 }
1398
1399 entry->callback = callback;
1400 entry->priv = priv;
1401 list_add(&entry->list, &target_reset_callback_list);
1402
1403
1404 return ERROR_OK;
1405 }
1406
1407 int target_register_trace_callback(int (*callback)(struct target *target,
1408 size_t len, uint8_t *data, void *priv), void *priv)
1409 {
1410 struct target_trace_callback *entry;
1411
1412 if (callback == NULL)
1413 return ERROR_COMMAND_SYNTAX_ERROR;
1414
1415 entry = malloc(sizeof(struct target_trace_callback));
1416 if (entry == NULL) {
1417 LOG_ERROR("error allocating buffer for trace callback entry");
1418 return ERROR_COMMAND_SYNTAX_ERROR;
1419 }
1420
1421 entry->callback = callback;
1422 entry->priv = priv;
1423 list_add(&entry->list, &target_trace_callback_list);
1424
1425
1426 return ERROR_OK;
1427 }
1428
1429 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1430 {
1431 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1432
1433 if (callback == NULL)
1434 return ERROR_COMMAND_SYNTAX_ERROR;
1435
1436 if (*callbacks_p) {
1437 while ((*callbacks_p)->next)
1438 callbacks_p = &((*callbacks_p)->next);
1439 callbacks_p = &((*callbacks_p)->next);
1440 }
1441
1442 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1443 (*callbacks_p)->callback = callback;
1444 (*callbacks_p)->periodic = periodic;
1445 (*callbacks_p)->time_ms = time_ms;
1446 (*callbacks_p)->removed = false;
1447
1448 gettimeofday(&(*callbacks_p)->when, NULL);
1449 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1450
1451 (*callbacks_p)->priv = priv;
1452 (*callbacks_p)->next = NULL;
1453
1454 return ERROR_OK;
1455 }
1456
1457 int target_unregister_event_callback(int (*callback)(struct target *target,
1458 enum target_event event, void *priv), void *priv)
1459 {
1460 struct target_event_callback **p = &target_event_callbacks;
1461 struct target_event_callback *c = target_event_callbacks;
1462
1463 if (callback == NULL)
1464 return ERROR_COMMAND_SYNTAX_ERROR;
1465
1466 while (c) {
1467 struct target_event_callback *next = c->next;
1468 if ((c->callback == callback) && (c->priv == priv)) {
1469 *p = next;
1470 free(c);
1471 return ERROR_OK;
1472 } else
1473 p = &(c->next);
1474 c = next;
1475 }
1476
1477 return ERROR_OK;
1478 }
1479
1480 int target_unregister_reset_callback(int (*callback)(struct target *target,
1481 enum target_reset_mode reset_mode, void *priv), void *priv)
1482 {
1483 struct target_reset_callback *entry;
1484
1485 if (callback == NULL)
1486 return ERROR_COMMAND_SYNTAX_ERROR;
1487
1488 list_for_each_entry(entry, &target_reset_callback_list, list) {
1489 if (entry->callback == callback && entry->priv == priv) {
1490 list_del(&entry->list);
1491 free(entry);
1492 break;
1493 }
1494 }
1495
1496 return ERROR_OK;
1497 }
1498
1499 int target_unregister_trace_callback(int (*callback)(struct target *target,
1500 size_t len, uint8_t *data, void *priv), void *priv)
1501 {
1502 struct target_trace_callback *entry;
1503
1504 if (callback == NULL)
1505 return ERROR_COMMAND_SYNTAX_ERROR;
1506
1507 list_for_each_entry(entry, &target_trace_callback_list, list) {
1508 if (entry->callback == callback && entry->priv == priv) {
1509 list_del(&entry->list);
1510 free(entry);
1511 break;
1512 }
1513 }
1514
1515 return ERROR_OK;
1516 }
1517
1518 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1519 {
1520 if (callback == NULL)
1521 return ERROR_COMMAND_SYNTAX_ERROR;
1522
1523 for (struct target_timer_callback *c = target_timer_callbacks;
1524 c; c = c->next) {
1525 if ((c->callback == callback) && (c->priv == priv)) {
1526 c->removed = true;
1527 return ERROR_OK;
1528 }
1529 }
1530
1531 return ERROR_FAIL;
1532 }
1533
1534 int target_call_event_callbacks(struct target *target, enum target_event event)
1535 {
1536 struct target_event_callback *callback = target_event_callbacks;
1537 struct target_event_callback *next_callback;
1538
1539 if (event == TARGET_EVENT_HALTED) {
1540 /* execute early halted first */
1541 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1542 }
1543
1544 LOG_DEBUG("target event %i (%s)", event,
1545 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1546
1547 target_handle_event(target, event);
1548
1549 while (callback) {
1550 next_callback = callback->next;
1551 callback->callback(target, event, callback->priv);
1552 callback = next_callback;
1553 }
1554
1555 return ERROR_OK;
1556 }
1557
1558 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1559 {
1560 struct target_reset_callback *callback;
1561
1562 LOG_DEBUG("target reset %i (%s)", reset_mode,
1563 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1564
1565 list_for_each_entry(callback, &target_reset_callback_list, list)
1566 callback->callback(target, reset_mode, callback->priv);
1567
1568 return ERROR_OK;
1569 }
1570
1571 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1572 {
1573 struct target_trace_callback *callback;
1574
1575 list_for_each_entry(callback, &target_trace_callback_list, list)
1576 callback->callback(target, len, data, callback->priv);
1577
1578 return ERROR_OK;
1579 }
1580
1581 static int target_timer_callback_periodic_restart(
1582 struct target_timer_callback *cb, struct timeval *now)
1583 {
1584 cb->when = *now;
1585 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1586 return ERROR_OK;
1587 }
1588
1589 static int target_call_timer_callback(struct target_timer_callback *cb,
1590 struct timeval *now)
1591 {
1592 cb->callback(cb->priv);
1593
1594 if (cb->periodic)
1595 return target_timer_callback_periodic_restart(cb, now);
1596
1597 return target_unregister_timer_callback(cb->callback, cb->priv);
1598 }
1599
1600 static int target_call_timer_callbacks_check_time(int checktime)
1601 {
1602 static bool callback_processing;
1603
1604 /* Do not allow nesting */
1605 if (callback_processing)
1606 return ERROR_OK;
1607
1608 callback_processing = true;
1609
1610 keep_alive();
1611
1612 struct timeval now;
1613 gettimeofday(&now, NULL);
1614
1615 /* Store an address of the place containing a pointer to the
1616 * next item; initially, that's a standalone "root of the
1617 * list" variable. */
1618 struct target_timer_callback **callback = &target_timer_callbacks;
1619 while (*callback) {
1620 if ((*callback)->removed) {
1621 struct target_timer_callback *p = *callback;
1622 *callback = (*callback)->next;
1623 free(p);
1624 continue;
1625 }
1626
1627 bool call_it = (*callback)->callback &&
1628 ((!checktime && (*callback)->periodic) ||
1629 timeval_compare(&now, &(*callback)->when) >= 0);
1630
1631 if (call_it)
1632 target_call_timer_callback(*callback, &now);
1633
1634 callback = &(*callback)->next;
1635 }
1636
1637 callback_processing = false;
1638 return ERROR_OK;
1639 }
1640
1641 int target_call_timer_callbacks(void)
1642 {
1643 return target_call_timer_callbacks_check_time(1);
1644 }
1645
1646 /* invoke periodic callbacks immediately */
1647 int target_call_timer_callbacks_now(void)
1648 {
1649 return target_call_timer_callbacks_check_time(0);
1650 }
1651
1652 /* Prints the working area layout for debug purposes */
1653 static void print_wa_layout(struct target *target)
1654 {
1655 struct working_area *c = target->working_areas;
1656
1657 while (c) {
1658 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1659 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1660 c->address, c->address + c->size - 1, c->size);
1661 c = c->next;
1662 }
1663 }
1664
1665 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1666 static void target_split_working_area(struct working_area *area, uint32_t size)
1667 {
1668 assert(area->free); /* Shouldn't split an allocated area */
1669 assert(size <= area->size); /* Caller should guarantee this */
1670
1671 /* Split only if not already the right size */
1672 if (size < area->size) {
1673 struct working_area *new_wa = malloc(sizeof(*new_wa));
1674
1675 if (new_wa == NULL)
1676 return;
1677
1678 new_wa->next = area->next;
1679 new_wa->size = area->size - size;
1680 new_wa->address = area->address + size;
1681 new_wa->backup = NULL;
1682 new_wa->user = NULL;
1683 new_wa->free = true;
1684
1685 area->next = new_wa;
1686 area->size = size;
1687
1688 /* If backup memory was allocated to this area, it has the wrong size
1689 * now so free it and it will be reallocated if/when needed */
1690 if (area->backup) {
1691 free(area->backup);
1692 area->backup = NULL;
1693 }
1694 }
1695 }
1696
1697 /* Merge all adjacent free areas into one */
1698 static void target_merge_working_areas(struct target *target)
1699 {
1700 struct working_area *c = target->working_areas;
1701
1702 while (c && c->next) {
1703 assert(c->next->address == c->address + c->size); /* This is an invariant */
1704
1705 /* Find two adjacent free areas */
1706 if (c->free && c->next->free) {
1707 /* Merge the last into the first */
1708 c->size += c->next->size;
1709
1710 /* Remove the last */
1711 struct working_area *to_be_freed = c->next;
1712 c->next = c->next->next;
1713 if (to_be_freed->backup)
1714 free(to_be_freed->backup);
1715 free(to_be_freed);
1716
1717 /* If backup memory was allocated to the remaining area, it's has
1718 * the wrong size now */
1719 if (c->backup) {
1720 free(c->backup);
1721 c->backup = NULL;
1722 }
1723 } else {
1724 c = c->next;
1725 }
1726 }
1727 }
1728
1729 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1730 {
1731 /* Reevaluate working area address based on MMU state*/
1732 if (target->working_areas == NULL) {
1733 int retval;
1734 int enabled;
1735
1736 retval = target->type->mmu(target, &enabled);
1737 if (retval != ERROR_OK)
1738 return retval;
1739
1740 if (!enabled) {
1741 if (target->working_area_phys_spec) {
1742 LOG_DEBUG("MMU disabled, using physical "
1743 "address for working memory " TARGET_ADDR_FMT,
1744 target->working_area_phys);
1745 target->working_area = target->working_area_phys;
1746 } else {
1747 LOG_ERROR("No working memory available. "
1748 "Specify -work-area-phys to target.");
1749 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1750 }
1751 } else {
1752 if (target->working_area_virt_spec) {
1753 LOG_DEBUG("MMU enabled, using virtual "
1754 "address for working memory " TARGET_ADDR_FMT,
1755 target->working_area_virt);
1756 target->working_area = target->working_area_virt;
1757 } else {
1758 LOG_ERROR("No working memory available. "
1759 "Specify -work-area-virt to target.");
1760 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1761 }
1762 }
1763
1764 /* Set up initial working area on first call */
1765 struct working_area *new_wa = malloc(sizeof(*new_wa));
1766 if (new_wa) {
1767 new_wa->next = NULL;
1768 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1769 new_wa->address = target->working_area;
1770 new_wa->backup = NULL;
1771 new_wa->user = NULL;
1772 new_wa->free = true;
1773 }
1774
1775 target->working_areas = new_wa;
1776 }
1777
1778 /* only allocate multiples of 4 byte */
1779 if (size % 4)
1780 size = (size + 3) & (~3UL);
1781
1782 struct working_area *c = target->working_areas;
1783
1784 /* Find the first large enough working area */
1785 while (c) {
1786 if (c->free && c->size >= size)
1787 break;
1788 c = c->next;
1789 }
1790
1791 if (c == NULL)
1792 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1793
1794 /* Split the working area into the requested size */
1795 target_split_working_area(c, size);
1796
1797 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1798 size, c->address);
1799
1800 if (target->backup_working_area) {
1801 if (c->backup == NULL) {
1802 c->backup = malloc(c->size);
1803 if (c->backup == NULL)
1804 return ERROR_FAIL;
1805 }
1806
1807 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1808 if (retval != ERROR_OK)
1809 return retval;
1810 }
1811
1812 /* mark as used, and return the new (reused) area */
1813 c->free = false;
1814 *area = c;
1815
1816 /* user pointer */
1817 c->user = area;
1818
1819 print_wa_layout(target);
1820
1821 return ERROR_OK;
1822 }
1823
1824 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1825 {
1826 int retval;
1827
1828 retval = target_alloc_working_area_try(target, size, area);
1829 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1830 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1831 return retval;
1832
1833 }
1834
1835 static int target_restore_working_area(struct target *target, struct working_area *area)
1836 {
1837 int retval = ERROR_OK;
1838
1839 if (target->backup_working_area && area->backup != NULL) {
1840 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1841 if (retval != ERROR_OK)
1842 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1843 area->size, area->address);
1844 }
1845
1846 return retval;
1847 }
1848
1849 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1850 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1851 {
1852 int retval = ERROR_OK;
1853
1854 if (area->free)
1855 return retval;
1856
1857 if (restore) {
1858 retval = target_restore_working_area(target, area);
1859 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1860 if (retval != ERROR_OK)
1861 return retval;
1862 }
1863
1864 area->free = true;
1865
1866 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1867 area->size, area->address);
1868
1869 /* mark user pointer invalid */
1870 /* TODO: Is this really safe? It points to some previous caller's memory.
1871 * How could we know that the area pointer is still in that place and not
1872 * some other vital data? What's the purpose of this, anyway? */
1873 *area->user = NULL;
1874 area->user = NULL;
1875
1876 target_merge_working_areas(target);
1877
1878 print_wa_layout(target);
1879
1880 return retval;
1881 }
1882
1883 int target_free_working_area(struct target *target, struct working_area *area)
1884 {
1885 return target_free_working_area_restore(target, area, 1);
1886 }
1887
1888 static void target_destroy(struct target *target)
1889 {
1890 if (target->type->deinit_target)
1891 target->type->deinit_target(target);
1892
1893 free(target->type);
1894 free(target->trace_info);
1895 free(target->cmd_name);
1896 free(target);
1897 }
1898
1899 void target_quit(void)
1900 {
1901 struct target_event_callback *pe = target_event_callbacks;
1902 while (pe) {
1903 struct target_event_callback *t = pe->next;
1904 free(pe);
1905 pe = t;
1906 }
1907 target_event_callbacks = NULL;
1908
1909 struct target_timer_callback *pt = target_timer_callbacks;
1910 while (pt) {
1911 struct target_timer_callback *t = pt->next;
1912 free(pt);
1913 pt = t;
1914 }
1915 target_timer_callbacks = NULL;
1916
1917 for (struct target *target = all_targets; target;) {
1918 struct target *tmp;
1919
1920 tmp = target->next;
1921 target_destroy(target);
1922 target = tmp;
1923 }
1924
1925 all_targets = NULL;
1926 }
1927
1928 /* free resources and restore memory, if restoring memory fails,
1929 * free up resources anyway
1930 */
1931 static void target_free_all_working_areas_restore(struct target *target, int restore)
1932 {
1933 struct working_area *c = target->working_areas;
1934
1935 LOG_DEBUG("freeing all working areas");
1936
1937 /* Loop through all areas, restoring the allocated ones and marking them as free */
1938 while (c) {
1939 if (!c->free) {
1940 if (restore)
1941 target_restore_working_area(target, c);
1942 c->free = true;
1943 *c->user = NULL; /* Same as above */
1944 c->user = NULL;
1945 }
1946 c = c->next;
1947 }
1948
1949 /* Run a merge pass to combine all areas into one */
1950 target_merge_working_areas(target);
1951
1952 print_wa_layout(target);
1953 }
1954
1955 void target_free_all_working_areas(struct target *target)
1956 {
1957 target_free_all_working_areas_restore(target, 1);
1958 }
1959
1960 /* Find the largest number of bytes that can be allocated */
1961 uint32_t target_get_working_area_avail(struct target *target)
1962 {
1963 struct working_area *c = target->working_areas;
1964 uint32_t max_size = 0;
1965
1966 if (c == NULL)
1967 return target->working_area_size;
1968
1969 while (c) {
1970 if (c->free && max_size < c->size)
1971 max_size = c->size;
1972
1973 c = c->next;
1974 }
1975
1976 return max_size;
1977 }
1978
1979 int target_arch_state(struct target *target)
1980 {
1981 int retval;
1982 if (target == NULL) {
1983 LOG_WARNING("No target has been configured");
1984 return ERROR_OK;
1985 }
1986
1987 if (target->state != TARGET_HALTED)
1988 return ERROR_OK;
1989
1990 retval = target->type->arch_state(target);
1991 return retval;
1992 }
1993
1994 static int target_get_gdb_fileio_info_default(struct target *target,
1995 struct gdb_fileio_info *fileio_info)
1996 {
1997 /* If target does not support semi-hosting function, target
1998 has no need to provide .get_gdb_fileio_info callback.
1999 It just return ERROR_FAIL and gdb_server will return "Txx"
2000 as target halted every time. */
2001 return ERROR_FAIL;
2002 }
2003
2004 static int target_gdb_fileio_end_default(struct target *target,
2005 int retcode, int fileio_errno, bool ctrl_c)
2006 {
2007 return ERROR_OK;
2008 }
2009
2010 static int target_profiling_default(struct target *target, uint32_t *samples,
2011 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2012 {
2013 struct timeval timeout, now;
2014
2015 gettimeofday(&timeout, NULL);
2016 timeval_add_time(&timeout, seconds, 0);
2017
2018 LOG_INFO("Starting profiling. Halting and resuming the"
2019 " target as often as we can...");
2020
2021 uint32_t sample_count = 0;
2022 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2023 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2024
2025 int retval = ERROR_OK;
2026 for (;;) {
2027 target_poll(target);
2028 if (target->state == TARGET_HALTED) {
2029 uint32_t t = buf_get_u32(reg->value, 0, 32);
2030 samples[sample_count++] = t;
2031 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2032 retval = target_resume(target, 1, 0, 0, 0);
2033 target_poll(target);
2034 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2035 } else if (target->state == TARGET_RUNNING) {
2036 /* We want to quickly sample the PC. */
2037 retval = target_halt(target);
2038 } else {
2039 LOG_INFO("Target not halted or running");
2040 retval = ERROR_OK;
2041 break;
2042 }
2043
2044 if (retval != ERROR_OK)
2045 break;
2046
2047 gettimeofday(&now, NULL);
2048 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2049 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2050 break;
2051 }
2052 }
2053
2054 *num_samples = sample_count;
2055 return retval;
2056 }
2057
2058 /* Single aligned words are guaranteed to use 16 or 32 bit access
2059 * mode respectively, otherwise data is handled as quickly as
2060 * possible
2061 */
2062 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2063 {
2064 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2065 size, address);
2066
2067 if (!target_was_examined(target)) {
2068 LOG_ERROR("Target not examined yet");
2069 return ERROR_FAIL;
2070 }
2071
2072 if (size == 0)
2073 return ERROR_OK;
2074
2075 if ((address + size - 1) < address) {
2076 /* GDB can request this when e.g. PC is 0xfffffffc */
2077 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2078 address,
2079 size);
2080 return ERROR_FAIL;
2081 }
2082
2083 return target->type->write_buffer(target, address, size, buffer);
2084 }
2085
2086 static int target_write_buffer_default(struct target *target,
2087 target_addr_t address, uint32_t count, const uint8_t *buffer)
2088 {
2089 uint32_t size;
2090
2091 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2092 * will have something to do with the size we leave to it. */
2093 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2094 if (address & size) {
2095 int retval = target_write_memory(target, address, size, 1, buffer);
2096 if (retval != ERROR_OK)
2097 return retval;
2098 address += size;
2099 count -= size;
2100 buffer += size;
2101 }
2102 }
2103
2104 /* Write the data with as large access size as possible. */
2105 for (; size > 0; size /= 2) {
2106 uint32_t aligned = count - count % size;
2107 if (aligned > 0) {
2108 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2109 if (retval != ERROR_OK)
2110 return retval;
2111 address += aligned;
2112 count -= aligned;
2113 buffer += aligned;
2114 }
2115 }
2116
2117 return ERROR_OK;
2118 }
2119
2120 /* Single aligned words are guaranteed to use 16 or 32 bit access
2121 * mode respectively, otherwise data is handled as quickly as
2122 * possible
2123 */
2124 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2125 {
2126 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2127 size, address);
2128
2129 if (!target_was_examined(target)) {
2130 LOG_ERROR("Target not examined yet");
2131 return ERROR_FAIL;
2132 }
2133
2134 if (size == 0)
2135 return ERROR_OK;
2136
2137 if ((address + size - 1) < address) {
2138 /* GDB can request this when e.g. PC is 0xfffffffc */
2139 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2140 address,
2141 size);
2142 return ERROR_FAIL;
2143 }
2144
2145 return target->type->read_buffer(target, address, size, buffer);
2146 }
2147
2148 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2149 {
2150 uint32_t size;
2151
2152 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2153 * will have something to do with the size we leave to it. */
2154 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2155 if (address & size) {
2156 int retval = target_read_memory(target, address, size, 1, buffer);
2157 if (retval != ERROR_OK)
2158 return retval;
2159 address += size;
2160 count -= size;
2161 buffer += size;
2162 }
2163 }
2164
2165 /* Read the data with as large access size as possible. */
2166 for (; size > 0; size /= 2) {
2167 uint32_t aligned = count - count % size;
2168 if (aligned > 0) {
2169 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2170 if (retval != ERROR_OK)
2171 return retval;
2172 address += aligned;
2173 count -= aligned;
2174 buffer += aligned;
2175 }
2176 }
2177
2178 return ERROR_OK;
2179 }
2180
2181 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2182 {
2183 uint8_t *buffer;
2184 int retval;
2185 uint32_t i;
2186 uint32_t checksum = 0;
2187 if (!target_was_examined(target)) {
2188 LOG_ERROR("Target not examined yet");
2189 return ERROR_FAIL;
2190 }
2191
2192 retval = target->type->checksum_memory(target, address, size, &checksum);
2193 if (retval != ERROR_OK) {
2194 buffer = malloc(size);
2195 if (buffer == NULL) {
2196 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2197 return ERROR_COMMAND_SYNTAX_ERROR;
2198 }
2199 retval = target_read_buffer(target, address, size, buffer);
2200 if (retval != ERROR_OK) {
2201 free(buffer);
2202 return retval;
2203 }
2204
2205 /* convert to target endianness */
2206 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2207 uint32_t target_data;
2208 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2209 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2210 }
2211
2212 retval = image_calculate_checksum(buffer, size, &checksum);
2213 free(buffer);
2214 }
2215
2216 *crc = checksum;
2217
2218 return retval;
2219 }
2220
2221 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2222 uint8_t erased_value)
2223 {
2224 int retval;
2225 if (!target_was_examined(target)) {
2226 LOG_ERROR("Target not examined yet");
2227 return ERROR_FAIL;
2228 }
2229
2230 if (target->type->blank_check_memory == 0)
2231 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2232
2233 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2234
2235 return retval;
2236 }
2237
2238 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2239 {
2240 uint8_t value_buf[8];
2241 if (!target_was_examined(target)) {
2242 LOG_ERROR("Target not examined yet");
2243 return ERROR_FAIL;
2244 }
2245
2246 int retval = target_read_memory(target, address, 8, 1, value_buf);
2247
2248 if (retval == ERROR_OK) {
2249 *value = target_buffer_get_u64(target, value_buf);
2250 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2251 address,
2252 *value);
2253 } else {
2254 *value = 0x0;
2255 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2256 address);
2257 }
2258
2259 return retval;
2260 }
2261
2262 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2263 {
2264 uint8_t value_buf[4];
2265 if (!target_was_examined(target)) {
2266 LOG_ERROR("Target not examined yet");
2267 return ERROR_FAIL;
2268 }
2269
2270 int retval = target_read_memory(target, address, 4, 1, value_buf);
2271
2272 if (retval == ERROR_OK) {
2273 *value = target_buffer_get_u32(target, value_buf);
2274 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2275 address,
2276 *value);
2277 } else {
2278 *value = 0x0;
2279 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2280 address);
2281 }
2282
2283 return retval;
2284 }
2285
2286 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2287 {
2288 uint8_t value_buf[2];
2289 if (!target_was_examined(target)) {
2290 LOG_ERROR("Target not examined yet");
2291 return ERROR_FAIL;
2292 }
2293
2294 int retval = target_read_memory(target, address, 2, 1, value_buf);
2295
2296 if (retval == ERROR_OK) {
2297 *value = target_buffer_get_u16(target, value_buf);
2298 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2299 address,
2300 *value);
2301 } else {
2302 *value = 0x0;
2303 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2304 address);
2305 }
2306
2307 return retval;
2308 }
2309
2310 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2311 {
2312 if (!target_was_examined(target)) {
2313 LOG_ERROR("Target not examined yet");
2314 return ERROR_FAIL;
2315 }
2316
2317 int retval = target_read_memory(target, address, 1, 1, value);
2318
2319 if (retval == ERROR_OK) {
2320 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2321 address,
2322 *value);
2323 } else {
2324 *value = 0x0;
2325 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2326 address);
2327 }
2328
2329 return retval;
2330 }
2331
2332 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2333 {
2334 int retval;
2335 uint8_t value_buf[8];
2336 if (!target_was_examined(target)) {
2337 LOG_ERROR("Target not examined yet");
2338 return ERROR_FAIL;
2339 }
2340
2341 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2342 address,
2343 value);
2344
2345 target_buffer_set_u64(target, value_buf, value);
2346 retval = target_write_memory(target, address, 8, 1, value_buf);
2347 if (retval != ERROR_OK)
2348 LOG_DEBUG("failed: %i", retval);
2349
2350 return retval;
2351 }
2352
2353 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2354 {
2355 int retval;
2356 uint8_t value_buf[4];
2357 if (!target_was_examined(target)) {
2358 LOG_ERROR("Target not examined yet");
2359 return ERROR_FAIL;
2360 }
2361
2362 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2363 address,
2364 value);
2365
2366 target_buffer_set_u32(target, value_buf, value);
2367 retval = target_write_memory(target, address, 4, 1, value_buf);
2368 if (retval != ERROR_OK)
2369 LOG_DEBUG("failed: %i", retval);
2370
2371 return retval;
2372 }
2373
2374 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2375 {
2376 int retval;
2377 uint8_t value_buf[2];
2378 if (!target_was_examined(target)) {
2379 LOG_ERROR("Target not examined yet");
2380 return ERROR_FAIL;
2381 }
2382
2383 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2384 address,
2385 value);
2386
2387 target_buffer_set_u16(target, value_buf, value);
2388 retval = target_write_memory(target, address, 2, 1, value_buf);
2389 if (retval != ERROR_OK)
2390 LOG_DEBUG("failed: %i", retval);
2391
2392 return retval;
2393 }
2394
2395 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2396 {
2397 int retval;
2398 if (!target_was_examined(target)) {
2399 LOG_ERROR("Target not examined yet");
2400 return ERROR_FAIL;
2401 }
2402
2403 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2404 address, value);
2405
2406 retval = target_write_memory(target, address, 1, 1, &value);
2407 if (retval != ERROR_OK)
2408 LOG_DEBUG("failed: %i", retval);
2409
2410 return retval;
2411 }
2412
2413 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2414 {
2415 int retval;
2416 uint8_t value_buf[8];
2417 if (!target_was_examined(target)) {
2418 LOG_ERROR("Target not examined yet");
2419 return ERROR_FAIL;
2420 }
2421
2422 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2423 address,
2424 value);
2425
2426 target_buffer_set_u64(target, value_buf, value);
2427 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2428 if (retval != ERROR_OK)
2429 LOG_DEBUG("failed: %i", retval);
2430
2431 return retval;
2432 }
2433
2434 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2435 {
2436 int retval;
2437 uint8_t value_buf[4];
2438 if (!target_was_examined(target)) {
2439 LOG_ERROR("Target not examined yet");
2440 return ERROR_FAIL;
2441 }
2442
2443 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2444 address,
2445 value);
2446
2447 target_buffer_set_u32(target, value_buf, value);
2448 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2449 if (retval != ERROR_OK)
2450 LOG_DEBUG("failed: %i", retval);
2451
2452 return retval;
2453 }
2454
2455 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2456 {
2457 int retval;
2458 uint8_t value_buf[2];
2459 if (!target_was_examined(target)) {
2460 LOG_ERROR("Target not examined yet");
2461 return ERROR_FAIL;
2462 }
2463
2464 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2465 address,
2466 value);
2467
2468 target_buffer_set_u16(target, value_buf, value);
2469 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2470 if (retval != ERROR_OK)
2471 LOG_DEBUG("failed: %i", retval);
2472
2473 return retval;
2474 }
2475
2476 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2477 {
2478 int retval;
2479 if (!target_was_examined(target)) {
2480 LOG_ERROR("Target not examined yet");
2481 return ERROR_FAIL;
2482 }
2483
2484 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2485 address, value);
2486
2487 retval = target_write_phys_memory(target, address, 1, 1, &value);
2488 if (retval != ERROR_OK)
2489 LOG_DEBUG("failed: %i", retval);
2490
2491 return retval;
2492 }
2493
2494 static int find_target(struct command_context *cmd_ctx, const char *name)
2495 {
2496 struct target *target = get_target(name);
2497 if (target == NULL) {
2498 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2499 return ERROR_FAIL;
2500 }
2501 if (!target->tap->enabled) {
2502 LOG_USER("Target: TAP %s is disabled, "
2503 "can't be the current target\n",
2504 target->tap->dotted_name);
2505 return ERROR_FAIL;
2506 }
2507
2508 cmd_ctx->current_target = target->target_number;
2509 return ERROR_OK;
2510 }
2511
2512
2513 COMMAND_HANDLER(handle_targets_command)
2514 {
2515 int retval = ERROR_OK;
2516 if (CMD_ARGC == 1) {
2517 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2518 if (retval == ERROR_OK) {
2519 /* we're done! */
2520 return retval;
2521 }
2522 }
2523
2524 struct target *target = all_targets;
2525 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2526 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2527 while (target) {
2528 const char *state;
2529 char marker = ' ';
2530
2531 if (target->tap->enabled)
2532 state = target_state_name(target);
2533 else
2534 state = "tap-disabled";
2535
2536 if (CMD_CTX->current_target == target->target_number)
2537 marker = '*';
2538
2539 /* keep columns lined up to match the headers above */
2540 command_print(CMD_CTX,
2541 "%2d%c %-18s %-10s %-6s %-18s %s",
2542 target->target_number,
2543 marker,
2544 target_name(target),
2545 target_type_name(target),
2546 Jim_Nvp_value2name_simple(nvp_target_endian,
2547 target->endianness)->name,
2548 target->tap->dotted_name,
2549 state);
2550 target = target->next;
2551 }
2552
2553 return retval;
2554 }
2555
2556 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2557
2558 static int powerDropout;
2559 static int srstAsserted;
2560
2561 static int runPowerRestore;
2562 static int runPowerDropout;
2563 static int runSrstAsserted;
2564 static int runSrstDeasserted;
2565
2566 static int sense_handler(void)
2567 {
2568 static int prevSrstAsserted;
2569 static int prevPowerdropout;
2570
2571 int retval = jtag_power_dropout(&powerDropout);
2572 if (retval != ERROR_OK)
2573 return retval;
2574
2575 int powerRestored;
2576 powerRestored = prevPowerdropout && !powerDropout;
2577 if (powerRestored)
2578 runPowerRestore = 1;
2579
2580 int64_t current = timeval_ms();
2581 static int64_t lastPower;
2582 bool waitMore = lastPower + 2000 > current;
2583 if (powerDropout && !waitMore) {
2584 runPowerDropout = 1;
2585 lastPower = current;
2586 }
2587
2588 retval = jtag_srst_asserted(&srstAsserted);
2589 if (retval != ERROR_OK)
2590 return retval;
2591
2592 int srstDeasserted;
2593 srstDeasserted = prevSrstAsserted && !srstAsserted;
2594
2595 static int64_t lastSrst;
2596 waitMore = lastSrst + 2000 > current;
2597 if (srstDeasserted && !waitMore) {
2598 runSrstDeasserted = 1;
2599 lastSrst = current;
2600 }
2601
2602 if (!prevSrstAsserted && srstAsserted)
2603 runSrstAsserted = 1;
2604
2605 prevSrstAsserted = srstAsserted;
2606 prevPowerdropout = powerDropout;
2607
2608 if (srstDeasserted || powerRestored) {
2609 /* Other than logging the event we can't do anything here.
2610 * Issuing a reset is a particularly bad idea as we might
2611 * be inside a reset already.
2612 */
2613 }
2614
2615 return ERROR_OK;
2616 }
2617
2618 /* process target state changes */
2619 static int handle_target(void *priv)
2620 {
2621 Jim_Interp *interp = (Jim_Interp *)priv;
2622 int retval = ERROR_OK;
2623
2624 if (!is_jtag_poll_safe()) {
2625 /* polling is disabled currently */
2626 return ERROR_OK;
2627 }
2628
2629 /* we do not want to recurse here... */
2630 static int recursive;
2631 if (!recursive) {
2632 recursive = 1;
2633 sense_handler();
2634 /* danger! running these procedures can trigger srst assertions and power dropouts.
2635 * We need to avoid an infinite loop/recursion here and we do that by
2636 * clearing the flags after running these events.
2637 */
2638 int did_something = 0;
2639 if (runSrstAsserted) {
2640 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2641 Jim_Eval(interp, "srst_asserted");
2642 did_something = 1;
2643 }
2644 if (runSrstDeasserted) {
2645 Jim_Eval(interp, "srst_deasserted");
2646 did_something = 1;
2647 }
2648 if (runPowerDropout) {
2649 LOG_INFO("Power dropout detected, running power_dropout proc.");
2650 Jim_Eval(interp, "power_dropout");
2651 did_something = 1;
2652 }
2653 if (runPowerRestore) {
2654 Jim_Eval(interp, "power_restore");
2655 did_something = 1;
2656 }
2657
2658 if (did_something) {
2659 /* clear detect flags */
2660 sense_handler();
2661 }
2662
2663 /* clear action flags */
2664
2665 runSrstAsserted = 0;
2666 runSrstDeasserted = 0;
2667 runPowerRestore = 0;
2668 runPowerDropout = 0;
2669
2670 recursive = 0;
2671 }
2672
2673 /* Poll targets for state changes unless that's globally disabled.
2674 * Skip targets that are currently disabled.
2675 */
2676 for (struct target *target = all_targets;
2677 is_jtag_poll_safe() && target;
2678 target = target->next) {
2679
2680 if (!target_was_examined(target))
2681 continue;
2682
2683 if (!target->tap->enabled)
2684 continue;
2685
2686 if (target->backoff.times > target->backoff.count) {
2687 /* do not poll this time as we failed previously */
2688 target->backoff.count++;
2689 continue;
2690 }
2691 target->backoff.count = 0;
2692
2693 /* only poll target if we've got power and srst isn't asserted */
2694 if (!powerDropout && !srstAsserted) {
2695 /* polling may fail silently until the target has been examined */
2696 retval = target_poll(target);
2697 if (retval != ERROR_OK) {
2698 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2699 if (target->backoff.times * polling_interval < 5000) {
2700 target->backoff.times *= 2;
2701 target->backoff.times++;
2702 }
2703
2704 /* Tell GDB to halt the debugger. This allows the user to
2705 * run monitor commands to handle the situation.
2706 */
2707 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2708 }
2709 if (target->backoff.times > 0) {
2710 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2711 target_reset_examined(target);
2712 retval = target_examine_one(target);
2713 /* Target examination could have failed due to unstable connection,
2714 * but we set the examined flag anyway to repoll it later */
2715 if (retval != ERROR_OK) {
2716 target->examined = true;
2717 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2718 target->backoff.times * polling_interval);
2719 return retval;
2720 }
2721 }
2722
2723 /* Since we succeeded, we reset backoff count */
2724 target->backoff.times = 0;
2725 }
2726 }
2727
2728 return retval;
2729 }
2730
2731 COMMAND_HANDLER(handle_reg_command)
2732 {
2733 struct target *target;
2734 struct reg *reg = NULL;
2735 unsigned count = 0;
2736 char *value;
2737
2738 LOG_DEBUG("-");
2739
2740 target = get_current_target(CMD_CTX);
2741
2742 /* list all available registers for the current target */
2743 if (CMD_ARGC == 0) {
2744 struct reg_cache *cache = target->reg_cache;
2745
2746 count = 0;
2747 while (cache) {
2748 unsigned i;
2749
2750 command_print(CMD_CTX, "===== %s", cache->name);
2751
2752 for (i = 0, reg = cache->reg_list;
2753 i < cache->num_regs;
2754 i++, reg++, count++) {
2755 /* only print cached values if they are valid */
2756 if (reg->valid) {
2757 value = buf_to_str(reg->value,
2758 reg->size, 16);
2759 command_print(CMD_CTX,
2760 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2761 count, reg->name,
2762 reg->size, value,
2763 reg->dirty
2764 ? " (dirty)"
2765 : "");
2766 free(value);
2767 } else {
2768 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2769 count, reg->name,
2770 reg->size) ;
2771 }
2772 }
2773 cache = cache->next;
2774 }
2775
2776 return ERROR_OK;
2777 }
2778
2779 /* access a single register by its ordinal number */
2780 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2781 unsigned num;
2782 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2783
2784 struct reg_cache *cache = target->reg_cache;
2785 count = 0;
2786 while (cache) {
2787 unsigned i;
2788 for (i = 0; i < cache->num_regs; i++) {
2789 if (count++ == num) {
2790 reg = &cache->reg_list[i];
2791 break;
2792 }
2793 }
2794 if (reg)
2795 break;
2796 cache = cache->next;
2797 }
2798
2799 if (!reg) {
2800 command_print(CMD_CTX, "%i is out of bounds, the current target "
2801 "has only %i registers (0 - %i)", num, count, count - 1);
2802 return ERROR_OK;
2803 }
2804 } else {
2805 /* access a single register by its name */
2806 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2807
2808 if (!reg) {
2809 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2810 return ERROR_OK;
2811 }
2812 }
2813
2814 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2815
2816 /* display a register */
2817 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2818 && (CMD_ARGV[1][0] <= '9')))) {
2819 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2820 reg->valid = 0;
2821
2822 if (reg->valid == 0)
2823 reg->type->get(reg);
2824 value = buf_to_str(reg->value, reg->size, 16);
2825 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2826 free(value);
2827 return ERROR_OK;
2828 }
2829
2830 /* set register value */
2831 if (CMD_ARGC == 2) {
2832 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2833 if (buf == NULL)
2834 return ERROR_FAIL;
2835 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2836
2837 reg->type->set(reg, buf);
2838
2839 value = buf_to_str(reg->value, reg->size, 16);
2840 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2841 free(value);
2842
2843 free(buf);
2844
2845 return ERROR_OK;
2846 }
2847
2848 return ERROR_COMMAND_SYNTAX_ERROR;
2849 }
2850
2851 COMMAND_HANDLER(handle_poll_command)
2852 {
2853 int retval = ERROR_OK;
2854 struct target *target = get_current_target(CMD_CTX);
2855
2856 if (CMD_ARGC == 0) {
2857 command_print(CMD_CTX, "background polling: %s",
2858 jtag_poll_get_enabled() ? "on" : "off");
2859 command_print(CMD_CTX, "TAP: %s (%s)",
2860 target->tap->dotted_name,
2861 target->tap->enabled ? "enabled" : "disabled");
2862 if (!target->tap->enabled)
2863 return ERROR_OK;
2864 retval = target_poll(target);
2865 if (retval != ERROR_OK)
2866 return retval;
2867 retval = target_arch_state(target);
2868 if (retval != ERROR_OK)
2869 return retval;
2870 } else if (CMD_ARGC == 1) {
2871 bool enable;
2872 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2873 jtag_poll_set_enabled(enable);
2874 } else
2875 return ERROR_COMMAND_SYNTAX_ERROR;
2876
2877 return retval;
2878 }
2879
2880 COMMAND_HANDLER(handle_wait_halt_command)
2881 {
2882 if (CMD_ARGC > 1)
2883 return ERROR_COMMAND_SYNTAX_ERROR;
2884
2885 unsigned ms = DEFAULT_HALT_TIMEOUT;
2886 if (1 == CMD_ARGC) {
2887 int retval = parse_uint(CMD_ARGV[0], &ms);
2888 if (ERROR_OK != retval)
2889 return ERROR_COMMAND_SYNTAX_ERROR;
2890 }
2891
2892 struct target *target = get_current_target(CMD_CTX);
2893 return target_wait_state(target, TARGET_HALTED, ms);
2894 }
2895
2896 /* wait for target state to change. The trick here is to have a low
2897 * latency for short waits and not to suck up all the CPU time
2898 * on longer waits.
2899 *
2900 * After 500ms, keep_alive() is invoked
2901 */
2902 int target_wait_state(struct target *target, enum target_state state, int ms)
2903 {
2904 int retval;
2905 int64_t then = 0, cur;
2906 bool once = true;
2907
2908 for (;;) {
2909 retval = target_poll(target);
2910 if (retval != ERROR_OK)
2911 return retval;
2912 if (target->state == state)
2913 break;
2914 cur = timeval_ms();
2915 if (once) {
2916 once = false;
2917 then = timeval_ms();
2918 LOG_DEBUG("waiting for target %s...",
2919 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2920 }
2921
2922 if (cur-then > 500)
2923 keep_alive();
2924
2925 if ((cur-then) > ms) {
2926 LOG_ERROR("timed out while waiting for target %s",
2927 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2928 return ERROR_FAIL;
2929 }
2930 }
2931
2932 return ERROR_OK;
2933 }
2934
2935 COMMAND_HANDLER(handle_halt_command)
2936 {
2937 LOG_DEBUG("-");
2938
2939 struct target *target = get_current_target(CMD_CTX);
2940 int retval = target_halt(target);
2941 if (ERROR_OK != retval)
2942 return retval;
2943
2944 if (CMD_ARGC == 1) {
2945 unsigned wait_local;
2946 retval = parse_uint(CMD_ARGV[0], &wait_local);
2947 if (ERROR_OK != retval)
2948 return ERROR_COMMAND_SYNTAX_ERROR;
2949 if (!wait_local)
2950 return ERROR_OK;
2951 }
2952
2953 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2954 }
2955
2956 COMMAND_HANDLER(handle_soft_reset_halt_command)
2957 {
2958 struct target *target = get_current_target(CMD_CTX);
2959
2960 LOG_USER("requesting target halt and executing a soft reset");
2961
2962 target_soft_reset_halt(target);
2963
2964 return ERROR_OK;
2965 }
2966
2967 COMMAND_HANDLER(handle_reset_command)
2968 {
2969 if (CMD_ARGC > 1)
2970 return ERROR_COMMAND_SYNTAX_ERROR;
2971
2972 enum target_reset_mode reset_mode = RESET_RUN;
2973 if (CMD_ARGC == 1) {
2974 const Jim_Nvp *n;
2975 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2976 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2977 return ERROR_COMMAND_SYNTAX_ERROR;
2978 reset_mode = n->value;
2979 }
2980
2981 /* reset *all* targets */
2982 return target_process_reset(CMD_CTX, reset_mode);
2983 }
2984
2985
2986 COMMAND_HANDLER(handle_resume_command)
2987 {
2988 int current = 1;
2989 if (CMD_ARGC > 1)
2990 return ERROR_COMMAND_SYNTAX_ERROR;
2991
2992 struct target *target = get_current_target(CMD_CTX);
2993
2994 /* with no CMD_ARGV, resume from current pc, addr = 0,
2995 * with one arguments, addr = CMD_ARGV[0],
2996 * handle breakpoints, not debugging */
2997 target_addr_t addr = 0;
2998 if (CMD_ARGC == 1) {
2999 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3000 current = 0;
3001 }
3002
3003 return target_resume(target, current, addr, 1, 0);
3004 }
3005
3006 COMMAND_HANDLER(handle_step_command)
3007 {
3008 if (CMD_ARGC > 1)
3009 return ERROR_COMMAND_SYNTAX_ERROR;
3010
3011 LOG_DEBUG("-");
3012
3013 /* with no CMD_ARGV, step from current pc, addr = 0,
3014 * with one argument addr = CMD_ARGV[0],
3015 * handle breakpoints, debugging */
3016 target_addr_t addr = 0;
3017 int current_pc = 1;
3018 if (CMD_ARGC == 1) {
3019 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3020 current_pc = 0;
3021 }
3022
3023 struct target *target = get_current_target(CMD_CTX);
3024
3025 return target->type->step(target, current_pc, addr, 1);
3026 }
3027
3028 static void handle_md_output(struct command_context *cmd_ctx,
3029 struct target *target, target_addr_t address, unsigned size,
3030 unsigned count, const uint8_t *buffer)
3031 {
3032 const unsigned line_bytecnt = 32;
3033 unsigned line_modulo = line_bytecnt / size;
3034
3035 char output[line_bytecnt * 4 + 1];
3036 unsigned output_len = 0;
3037
3038 const char *value_fmt;
3039 switch (size) {
3040 case 8:
3041 value_fmt = "%16.16"PRIx64" ";
3042 break;
3043 case 4:
3044 value_fmt = "%8.8"PRIx64" ";
3045 break;
3046 case 2:
3047 value_fmt = "%4.4"PRIx64" ";
3048 break;
3049 case 1:
3050 value_fmt = "%2.2"PRIx64" ";
3051 break;
3052 default:
3053 /* "can't happen", caller checked */
3054 LOG_ERROR("invalid memory read size: %u", size);
3055 return;
3056 }
3057
3058 for (unsigned i = 0; i < count; i++) {
3059 if (i % line_modulo == 0) {
3060 output_len += snprintf(output + output_len,
3061 sizeof(output) - output_len,
3062 TARGET_ADDR_FMT ": ",
3063 (address + (i * size)));
3064 }
3065
3066 uint64_t value = 0;
3067 const uint8_t *value_ptr = buffer + i * size;
3068 switch (size) {
3069 case 8:
3070 value = target_buffer_get_u64(target, value_ptr);
3071 break;
3072 case 4:
3073 value = target_buffer_get_u32(target, value_ptr);
3074 break;
3075 case 2:
3076 value = target_buffer_get_u16(target, value_ptr);
3077 break;
3078 case 1:
3079 value = *value_ptr;
3080 }
3081 output_len += snprintf(output + output_len,
3082 sizeof(output) - output_len,
3083 value_fmt, value);
3084
3085 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3086 command_print(cmd_ctx, "%s", output);
3087 output_len = 0;
3088 }
3089 }
3090 }
3091
3092 COMMAND_HANDLER(handle_md_command)
3093 {
3094 if (CMD_ARGC < 1)
3095 return ERROR_COMMAND_SYNTAX_ERROR;
3096
3097 unsigned size = 0;
3098 switch (CMD_NAME[2]) {
3099 case 'd':
3100 size = 8;
3101 break;
3102 case 'w':
3103 size = 4;
3104 break;
3105 case 'h':
3106 size = 2;
3107 break;
3108 case 'b':
3109 size = 1;
3110 break;
3111 default:
3112 return ERROR_COMMAND_SYNTAX_ERROR;
3113 }
3114
3115 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3116 int (*fn)(struct target *target,
3117 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3118 if (physical) {
3119 CMD_ARGC--;
3120 CMD_ARGV++;
3121 fn = target_read_phys_memory;
3122 } else
3123 fn = target_read_memory;
3124 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3125 return ERROR_COMMAND_SYNTAX_ERROR;
3126
3127 target_addr_t address;
3128 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3129
3130 unsigned count = 1;
3131 if (CMD_ARGC == 2)
3132 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3133
3134 uint8_t *buffer = calloc(count, size);
3135 if (buffer == NULL) {
3136 LOG_ERROR("Failed to allocate md read buffer");
3137 return ERROR_FAIL;
3138 }
3139
3140 struct target *target = get_current_target(CMD_CTX);
3141 int retval = fn(target, address, size, count, buffer);
3142 if (ERROR_OK == retval)
3143 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3144
3145 free(buffer);
3146
3147 return retval;
3148 }
3149
3150 typedef int (*target_write_fn)(struct target *target,
3151 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3152
3153 static int target_fill_mem(struct target *target,
3154 target_addr_t address,
3155 target_write_fn fn,
3156 unsigned data_size,
3157 /* value */
3158 uint64_t b,
3159 /* count */
3160 unsigned c)
3161 {
3162 /* We have to write in reasonably large chunks to be able
3163 * to fill large memory areas with any sane speed */
3164 const unsigned chunk_size = 16384;
3165 uint8_t *target_buf = malloc(chunk_size * data_size);
3166 if (target_buf == NULL) {
3167 LOG_ERROR("Out of memory");
3168 return ERROR_FAIL;
3169 }
3170
3171 for (unsigned i = 0; i < chunk_size; i++) {
3172 switch (data_size) {
3173 case 8:
3174 target_buffer_set_u64(target, target_buf + i * data_size, b);
3175 break;
3176 case 4:
3177 target_buffer_set_u32(target, target_buf + i * data_size, b);
3178 break;
3179 case 2:
3180 target_buffer_set_u16(target, target_buf + i * data_size, b);
3181 break;
3182 case 1:
3183 target_buffer_set_u8(target, target_buf + i * data_size, b);
3184 break;
3185 default:
3186 exit(-1);
3187 }
3188 }
3189
3190 int retval = ERROR_OK;
3191
3192 for (unsigned x = 0; x < c; x += chunk_size) {