1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target
*target
, target_addr_t address
,
63 uint32_t count
, uint8_t *buffer
);
64 static int target_write_buffer_default(struct target
*target
, target_addr_t address
,
65 uint32_t count
, const uint8_t *buffer
);
66 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
67 int argc
, Jim_Obj
* const *argv
);
68 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
69 int argc
, Jim_Obj
* const *argv
);
70 static int target_register_user_commands(struct command_context
*cmd_ctx
);
71 static int target_get_gdb_fileio_info_default(struct target
*target
,
72 struct gdb_fileio_info
*fileio_info
);
73 static int target_gdb_fileio_end_default(struct target
*target
, int retcode
,
74 int fileio_errno
, bool ctrl_c
);
75 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
76 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
);
79 extern struct target_type arm7tdmi_target
;
80 extern struct target_type arm720t_target
;
81 extern struct target_type arm9tdmi_target
;
82 extern struct target_type arm920t_target
;
83 extern struct target_type arm966e_target
;
84 extern struct target_type arm946e_target
;
85 extern struct target_type arm926ejs_target
;
86 extern struct target_type fa526_target
;
87 extern struct target_type feroceon_target
;
88 extern struct target_type dragonite_target
;
89 extern struct target_type xscale_target
;
90 extern struct target_type cortexm_target
;
91 extern struct target_type cortexa_target
;
92 extern struct target_type aarch64_target
;
93 extern struct target_type cortexr4_target
;
94 extern struct target_type arm11_target
;
95 extern struct target_type ls1_sap_target
;
96 extern struct target_type mips_m4k_target
;
97 extern struct target_type avr_target
;
98 extern struct target_type dsp563xx_target
;
99 extern struct target_type dsp5680xx_target
;
100 extern struct target_type testee_target
;
101 extern struct target_type avr32_ap7k_target
;
102 extern struct target_type hla_target
;
103 extern struct target_type nds32_v2_target
;
104 extern struct target_type nds32_v3_target
;
105 extern struct target_type nds32_v3m_target
;
106 extern struct target_type or1k_target
;
107 extern struct target_type quark_x10xx_target
;
108 extern struct target_type quark_d20xx_target
;
109 extern struct target_type stm8_target
;
110 extern struct target_type riscv_target
;
111 extern struct target_type mem_ap_target
;
113 static struct target_type
*target_types
[] = {
152 struct target
*all_targets
;
153 static struct target_event_callback
*target_event_callbacks
;
154 static struct target_timer_callback
*target_timer_callbacks
;
155 LIST_HEAD(target_reset_callback_list
);
156 LIST_HEAD(target_trace_callback_list
);
157 static const int polling_interval
= 100;
159 static const Jim_Nvp nvp_assert
[] = {
160 { .name
= "assert", NVP_ASSERT
},
161 { .name
= "deassert", NVP_DEASSERT
},
162 { .name
= "T", NVP_ASSERT
},
163 { .name
= "F", NVP_DEASSERT
},
164 { .name
= "t", NVP_ASSERT
},
165 { .name
= "f", NVP_DEASSERT
},
166 { .name
= NULL
, .value
= -1 }
169 static const Jim_Nvp nvp_error_target
[] = {
170 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
171 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
172 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
173 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
174 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
175 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
176 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
177 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
178 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
179 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
180 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
181 { .value
= -1, .name
= NULL
}
184 static const char *target_strerror_safe(int err
)
188 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
195 static const Jim_Nvp nvp_target_event
[] = {
197 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
198 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
199 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
200 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
201 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
203 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
204 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
206 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
207 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
208 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
209 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
210 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
211 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
212 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
213 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
215 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
216 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
218 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
219 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
221 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
222 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
224 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
225 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
227 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
228 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
230 { .value
= TARGET_EVENT_TRACE_CONFIG
, .name
= "trace-config" },
232 { .name
= NULL
, .value
= -1 }
235 static const Jim_Nvp nvp_target_state
[] = {
236 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
237 { .name
= "running", .value
= TARGET_RUNNING
},
238 { .name
= "halted", .value
= TARGET_HALTED
},
239 { .name
= "reset", .value
= TARGET_RESET
},
240 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
241 { .name
= NULL
, .value
= -1 },
244 static const Jim_Nvp nvp_target_debug_reason
[] = {
245 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
246 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
247 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
248 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
249 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
250 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
251 { .name
= "program-exit" , .value
= DBG_REASON_EXIT
},
252 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
253 { .name
= NULL
, .value
= -1 },
256 static const Jim_Nvp nvp_target_endian
[] = {
257 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
258 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
259 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
260 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
261 { .name
= NULL
, .value
= -1 },
264 static const Jim_Nvp nvp_reset_modes
[] = {
265 { .name
= "unknown", .value
= RESET_UNKNOWN
},
266 { .name
= "run" , .value
= RESET_RUN
},
267 { .name
= "halt" , .value
= RESET_HALT
},
268 { .name
= "init" , .value
= RESET_INIT
},
269 { .name
= NULL
, .value
= -1 },
272 const char *debug_reason_name(struct target
*t
)
276 cp
= Jim_Nvp_value2name_simple(nvp_target_debug_reason
,
277 t
->debug_reason
)->name
;
279 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
280 cp
= "(*BUG*unknown*BUG*)";
285 const char *target_state_name(struct target
*t
)
288 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
290 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
291 cp
= "(*BUG*unknown*BUG*)";
294 if (!target_was_examined(t
) && t
->defer_examine
)
295 cp
= "examine deferred";
300 const char *target_event_name(enum target_event event
)
303 cp
= Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
;
305 LOG_ERROR("Invalid target event: %d", (int)(event
));
306 cp
= "(*BUG*unknown*BUG*)";
311 const char *target_reset_mode_name(enum target_reset_mode reset_mode
)
314 cp
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
;
316 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode
));
317 cp
= "(*BUG*unknown*BUG*)";
322 /* determine the number of the new target */
323 static int new_target_number(void)
328 /* number is 0 based */
332 if (x
< t
->target_number
)
333 x
= t
->target_number
;
339 /* read a uint64_t from a buffer in target memory endianness */
340 uint64_t target_buffer_get_u64(struct target
*target
, const uint8_t *buffer
)
342 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
343 return le_to_h_u64(buffer
);
345 return be_to_h_u64(buffer
);
348 /* read a uint32_t from a buffer in target memory endianness */
349 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
351 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
352 return le_to_h_u32(buffer
);
354 return be_to_h_u32(buffer
);
357 /* read a uint24_t from a buffer in target memory endianness */
358 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
360 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
361 return le_to_h_u24(buffer
);
363 return be_to_h_u24(buffer
);
366 /* read a uint16_t from a buffer in target memory endianness */
367 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
369 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
370 return le_to_h_u16(buffer
);
372 return be_to_h_u16(buffer
);
375 /* read a uint8_t from a buffer in target memory endianness */
376 static uint8_t target_buffer_get_u8(struct target
*target
, const uint8_t *buffer
)
378 return *buffer
& 0x0ff;
381 /* write a uint64_t to a buffer in target memory endianness */
382 void target_buffer_set_u64(struct target
*target
, uint8_t *buffer
, uint64_t value
)
384 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
385 h_u64_to_le(buffer
, value
);
387 h_u64_to_be(buffer
, value
);
390 /* write a uint32_t to a buffer in target memory endianness */
391 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
393 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
394 h_u32_to_le(buffer
, value
);
396 h_u32_to_be(buffer
, value
);
399 /* write a uint24_t to a buffer in target memory endianness */
400 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
402 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
403 h_u24_to_le(buffer
, value
);
405 h_u24_to_be(buffer
, value
);
408 /* write a uint16_t to a buffer in target memory endianness */
409 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
411 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
412 h_u16_to_le(buffer
, value
);
414 h_u16_to_be(buffer
, value
);
417 /* write a uint8_t to a buffer in target memory endianness */
418 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
423 /* write a uint64_t array to a buffer in target memory endianness */
424 void target_buffer_get_u64_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint64_t *dstbuf
)
427 for (i
= 0; i
< count
; i
++)
428 dstbuf
[i
] = target_buffer_get_u64(target
, &buffer
[i
* 8]);
431 /* write a uint32_t array to a buffer in target memory endianness */
432 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
435 for (i
= 0; i
< count
; i
++)
436 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
439 /* write a uint16_t array to a buffer in target memory endianness */
440 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
443 for (i
= 0; i
< count
; i
++)
444 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
447 /* write a uint64_t array to a buffer in target memory endianness */
448 void target_buffer_set_u64_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint64_t *srcbuf
)
451 for (i
= 0; i
< count
; i
++)
452 target_buffer_set_u64(target
, &buffer
[i
* 8], srcbuf
[i
]);
455 /* write a uint32_t array to a buffer in target memory endianness */
456 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint32_t *srcbuf
)
459 for (i
= 0; i
< count
; i
++)
460 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
463 /* write a uint16_t array to a buffer in target memory endianness */
464 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint16_t *srcbuf
)
467 for (i
= 0; i
< count
; i
++)
468 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
471 /* return a pointer to a configured target; id is name or number */
472 struct target
*get_target(const char *id
)
474 struct target
*target
;
476 /* try as tcltarget name */
477 for (target
= all_targets
; target
; target
= target
->next
) {
478 if (target_name(target
) == NULL
)
480 if (strcmp(id
, target_name(target
)) == 0)
484 /* It's OK to remove this fallback sometime after August 2010 or so */
486 /* no match, try as number */
488 if (parse_uint(id
, &num
) != ERROR_OK
)
491 for (target
= all_targets
; target
; target
= target
->next
) {
492 if (target
->target_number
== (int)num
) {
493 LOG_WARNING("use '%s' as target identifier, not '%u'",
494 target_name(target
), num
);
502 /* returns a pointer to the n-th configured target */
503 struct target
*get_target_by_num(int num
)
505 struct target
*target
= all_targets
;
508 if (target
->target_number
== num
)
510 target
= target
->next
;
516 struct target
*get_current_target(struct command_context
*cmd_ctx
)
518 struct target
*target
= cmd_ctx
->current_target_override
519 ? cmd_ctx
->current_target_override
520 : cmd_ctx
->current_target
;
522 if (target
== NULL
) {
523 LOG_ERROR("BUG: current_target out of bounds");
530 int target_poll(struct target
*target
)
534 /* We can't poll until after examine */
535 if (!target_was_examined(target
)) {
536 /* Fail silently lest we pollute the log */
540 retval
= target
->type
->poll(target
);
541 if (retval
!= ERROR_OK
)
544 if (target
->halt_issued
) {
545 if (target
->state
== TARGET_HALTED
)
546 target
->halt_issued
= false;
548 int64_t t
= timeval_ms() - target
->halt_issued_time
;
549 if (t
> DEFAULT_HALT_TIMEOUT
) {
550 target
->halt_issued
= false;
551 LOG_INFO("Halt timed out, wake up GDB.");
552 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
560 int target_halt(struct target
*target
)
563 /* We can't poll until after examine */
564 if (!target_was_examined(target
)) {
565 LOG_ERROR("Target not examined yet");
569 retval
= target
->type
->halt(target
);
570 if (retval
!= ERROR_OK
)
573 target
->halt_issued
= true;
574 target
->halt_issued_time
= timeval_ms();
580 * Make the target (re)start executing using its saved execution
581 * context (possibly with some modifications).
583 * @param target Which target should start executing.
584 * @param current True to use the target's saved program counter instead
585 * of the address parameter
586 * @param address Optionally used as the program counter.
587 * @param handle_breakpoints True iff breakpoints at the resumption PC
588 * should be skipped. (For example, maybe execution was stopped by
589 * such a breakpoint, in which case it would be counterprodutive to
591 * @param debug_execution False if all working areas allocated by OpenOCD
592 * should be released and/or restored to their original contents.
593 * (This would for example be true to run some downloaded "helper"
594 * algorithm code, which resides in one such working buffer and uses
595 * another for data storage.)
597 * @todo Resolve the ambiguity about what the "debug_execution" flag
598 * signifies. For example, Target implementations don't agree on how
599 * it relates to invalidation of the register cache, or to whether
600 * breakpoints and watchpoints should be enabled. (It would seem wrong
601 * to enable breakpoints when running downloaded "helper" algorithms
602 * (debug_execution true), since the breakpoints would be set to match
603 * target firmware being debugged, not the helper algorithm.... and
604 * enabling them could cause such helpers to malfunction (for example,
605 * by overwriting data with a breakpoint instruction. On the other
606 * hand the infrastructure for running such helpers might use this
607 * procedure but rely on hardware breakpoint to detect termination.)
609 int target_resume(struct target
*target
, int current
, target_addr_t address
,
610 int handle_breakpoints
, int debug_execution
)
614 /* We can't poll until after examine */
615 if (!target_was_examined(target
)) {
616 LOG_ERROR("Target not examined yet");
620 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_START
);
622 /* note that resume *must* be asynchronous. The CPU can halt before
623 * we poll. The CPU can even halt at the current PC as a result of
624 * a software breakpoint being inserted by (a bug?) the application.
626 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
627 if (retval
!= ERROR_OK
)
630 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_END
);
635 static int target_process_reset(struct command_context
*cmd_ctx
, enum target_reset_mode reset_mode
)
640 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
641 if (n
->name
== NULL
) {
642 LOG_ERROR("invalid reset mode");
646 struct target
*target
;
647 for (target
= all_targets
; target
; target
= target
->next
)
648 target_call_reset_callbacks(target
, reset_mode
);
650 /* disable polling during reset to make reset event scripts
651 * more predictable, i.e. dr/irscan & pathmove in events will
652 * not have JTAG operations injected into the middle of a sequence.
654 bool save_poll
= jtag_poll_get_enabled();
656 jtag_poll_set_enabled(false);
658 sprintf(buf
, "ocd_process_reset %s", n
->name
);
659 retval
= Jim_Eval(cmd_ctx
->interp
, buf
);
661 jtag_poll_set_enabled(save_poll
);
663 if (retval
!= JIM_OK
) {
664 Jim_MakeErrorMessage(cmd_ctx
->interp
);
665 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx
->interp
), NULL
));
669 /* We want any events to be processed before the prompt */
670 retval
= target_call_timer_callbacks_now();
672 for (target
= all_targets
; target
; target
= target
->next
) {
673 target
->type
->check_reset(target
);
674 target
->running_alg
= false;
680 static int identity_virt2phys(struct target
*target
,
681 target_addr_t
virtual, target_addr_t
*physical
)
687 static int no_mmu(struct target
*target
, int *enabled
)
693 static int default_examine(struct target
*target
)
695 target_set_examined(target
);
699 /* no check by default */
700 static int default_check_reset(struct target
*target
)
705 int target_examine_one(struct target
*target
)
707 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
709 int retval
= target
->type
->examine(target
);
710 if (retval
!= ERROR_OK
)
713 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
718 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
720 struct target
*target
= priv
;
722 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
725 jtag_unregister_event_callback(jtag_enable_callback
, target
);
727 return target_examine_one(target
);
730 /* Targets that correctly implement init + examine, i.e.
731 * no communication with target during init:
735 int target_examine(void)
737 int retval
= ERROR_OK
;
738 struct target
*target
;
740 for (target
= all_targets
; target
; target
= target
->next
) {
741 /* defer examination, but don't skip it */
742 if (!target
->tap
->enabled
) {
743 jtag_register_event_callback(jtag_enable_callback
,
748 if (target
->defer_examine
)
751 retval
= target_examine_one(target
);
752 if (retval
!= ERROR_OK
)
758 const char *target_type_name(struct target
*target
)
760 return target
->type
->name
;
763 static int target_soft_reset_halt(struct target
*target
)
765 if (!target_was_examined(target
)) {
766 LOG_ERROR("Target not examined yet");
769 if (!target
->type
->soft_reset_halt
) {
770 LOG_ERROR("Target %s does not support soft_reset_halt",
771 target_name(target
));
774 return target
->type
->soft_reset_halt(target
);
778 * Downloads a target-specific native code algorithm to the target,
779 * and executes it. * Note that some targets may need to set up, enable,
780 * and tear down a breakpoint (hard or * soft) to detect algorithm
781 * termination, while others may support lower overhead schemes where
782 * soft breakpoints embedded in the algorithm automatically terminate the
785 * @param target used to run the algorithm
786 * @param arch_info target-specific description of the algorithm.
788 int target_run_algorithm(struct target
*target
,
789 int num_mem_params
, struct mem_param
*mem_params
,
790 int num_reg_params
, struct reg_param
*reg_param
,
791 uint32_t entry_point
, uint32_t exit_point
,
792 int timeout_ms
, void *arch_info
)
794 int retval
= ERROR_FAIL
;
796 if (!target_was_examined(target
)) {
797 LOG_ERROR("Target not examined yet");
800 if (!target
->type
->run_algorithm
) {
801 LOG_ERROR("Target type '%s' does not support %s",
802 target_type_name(target
), __func__
);
806 target
->running_alg
= true;
807 retval
= target
->type
->run_algorithm(target
,
808 num_mem_params
, mem_params
,
809 num_reg_params
, reg_param
,
810 entry_point
, exit_point
, timeout_ms
, arch_info
);
811 target
->running_alg
= false;
818 * Executes a target-specific native code algorithm and leaves it running.
820 * @param target used to run the algorithm
821 * @param arch_info target-specific description of the algorithm.
823 int target_start_algorithm(struct target
*target
,
824 int num_mem_params
, struct mem_param
*mem_params
,
825 int num_reg_params
, struct reg_param
*reg_params
,
826 uint32_t entry_point
, uint32_t exit_point
,
829 int retval
= ERROR_FAIL
;
831 if (!target_was_examined(target
)) {
832 LOG_ERROR("Target not examined yet");
835 if (!target
->type
->start_algorithm
) {
836 LOG_ERROR("Target type '%s' does not support %s",
837 target_type_name(target
), __func__
);
840 if (target
->running_alg
) {
841 LOG_ERROR("Target is already running an algorithm");
845 target
->running_alg
= true;
846 retval
= target
->type
->start_algorithm(target
,
847 num_mem_params
, mem_params
,
848 num_reg_params
, reg_params
,
849 entry_point
, exit_point
, arch_info
);
856 * Waits for an algorithm started with target_start_algorithm() to complete.
858 * @param target used to run the algorithm
859 * @param arch_info target-specific description of the algorithm.
861 int target_wait_algorithm(struct target
*target
,
862 int num_mem_params
, struct mem_param
*mem_params
,
863 int num_reg_params
, struct reg_param
*reg_params
,
864 uint32_t exit_point
, int timeout_ms
,
867 int retval
= ERROR_FAIL
;
869 if (!target
->type
->wait_algorithm
) {
870 LOG_ERROR("Target type '%s' does not support %s",
871 target_type_name(target
), __func__
);
874 if (!target
->running_alg
) {
875 LOG_ERROR("Target is not running an algorithm");
879 retval
= target
->type
->wait_algorithm(target
,
880 num_mem_params
, mem_params
,
881 num_reg_params
, reg_params
,
882 exit_point
, timeout_ms
, arch_info
);
883 if (retval
!= ERROR_TARGET_TIMEOUT
)
884 target
->running_alg
= false;
891 * Streams data to a circular buffer on target intended for consumption by code
892 * running asynchronously on target.
894 * This is intended for applications where target-specific native code runs
895 * on the target, receives data from the circular buffer, does something with
896 * it (most likely writing it to a flash memory), and advances the circular
899 * This assumes that the helper algorithm has already been loaded to the target,
900 * but has not been started yet. Given memory and register parameters are passed
903 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
906 * [buffer_start + 0, buffer_start + 4):
907 * Write Pointer address (aka head). Written and updated by this
908 * routine when new data is written to the circular buffer.
909 * [buffer_start + 4, buffer_start + 8):
910 * Read Pointer address (aka tail). Updated by code running on the
911 * target after it consumes data.
912 * [buffer_start + 8, buffer_start + buffer_size):
913 * Circular buffer contents.
915 * See contrib/loaders/flash/stm32f1x.S for an example.
917 * @param target used to run the algorithm
918 * @param buffer address on the host where data to be sent is located
919 * @param count number of blocks to send
920 * @param block_size size in bytes of each block
921 * @param num_mem_params count of memory-based params to pass to algorithm
922 * @param mem_params memory-based params to pass to algorithm
923 * @param num_reg_params count of register-based params to pass to algorithm
924 * @param reg_params memory-based params to pass to algorithm
925 * @param buffer_start address on the target of the circular buffer structure
926 * @param buffer_size size of the circular buffer structure
927 * @param entry_point address on the target to execute to start the algorithm
928 * @param exit_point address at which to set a breakpoint to catch the
929 * end of the algorithm; can be 0 if target triggers a breakpoint itself
932 int target_run_flash_async_algorithm(struct target
*target
,
933 const uint8_t *buffer
, uint32_t count
, int block_size
,
934 int num_mem_params
, struct mem_param
*mem_params
,
935 int num_reg_params
, struct reg_param
*reg_params
,
936 uint32_t buffer_start
, uint32_t buffer_size
,
937 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
942 const uint8_t *buffer_orig
= buffer
;
944 /* Set up working area. First word is write pointer, second word is read pointer,
945 * rest is fifo data area. */
946 uint32_t wp_addr
= buffer_start
;
947 uint32_t rp_addr
= buffer_start
+ 4;
948 uint32_t fifo_start_addr
= buffer_start
+ 8;
949 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
951 uint32_t wp
= fifo_start_addr
;
952 uint32_t rp
= fifo_start_addr
;
954 /* validate block_size is 2^n */
955 assert(!block_size
|| !(block_size
& (block_size
- 1)));
957 retval
= target_write_u32(target
, wp_addr
, wp
);
958 if (retval
!= ERROR_OK
)
960 retval
= target_write_u32(target
, rp_addr
, rp
);
961 if (retval
!= ERROR_OK
)
964 /* Start up algorithm on target and let it idle while writing the first chunk */
965 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
966 num_reg_params
, reg_params
,
971 if (retval
!= ERROR_OK
) {
972 LOG_ERROR("error starting target flash write algorithm");
978 retval
= target_read_u32(target
, rp_addr
, &rp
);
979 if (retval
!= ERROR_OK
) {
980 LOG_ERROR("failed to get read pointer");
984 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
,
985 (size_t) (buffer
- buffer_orig
), count
, wp
, rp
);
988 LOG_ERROR("flash write algorithm aborted by target");
989 retval
= ERROR_FLASH_OPERATION_FAILED
;
993 if (((rp
- fifo_start_addr
) & (block_size
- 1)) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
994 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
998 /* Count the number of bytes available in the fifo without
999 * crossing the wrap around. Make sure to not fill it completely,
1000 * because that would make wp == rp and that's the empty condition. */
1001 uint32_t thisrun_bytes
;
1003 thisrun_bytes
= rp
- wp
- block_size
;
1004 else if (rp
> fifo_start_addr
)
1005 thisrun_bytes
= fifo_end_addr
- wp
;
1007 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
1009 if (thisrun_bytes
== 0) {
1010 /* Throttle polling a bit if transfer is (much) faster than flash
1011 * programming. The exact delay shouldn't matter as long as it's
1012 * less than buffer size / flash speed. This is very unlikely to
1013 * run when using high latency connections such as USB. */
1016 /* to stop an infinite loop on some targets check and increment a timeout
1017 * this issue was observed on a stellaris using the new ICDI interface */
1018 if (timeout
++ >= 500) {
1019 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1020 return ERROR_FLASH_OPERATION_FAILED
;
1025 /* reset our timeout */
1028 /* Limit to the amount of data we actually want to write */
1029 if (thisrun_bytes
> count
* block_size
)
1030 thisrun_bytes
= count
* block_size
;
1032 /* Write data to fifo */
1033 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
1034 if (retval
!= ERROR_OK
)
1037 /* Update counters and wrap write pointer */
1038 buffer
+= thisrun_bytes
;
1039 count
-= thisrun_bytes
/ block_size
;
1040 wp
+= thisrun_bytes
;
1041 if (wp
>= fifo_end_addr
)
1042 wp
= fifo_start_addr
;
1044 /* Store updated write pointer to target */
1045 retval
= target_write_u32(target
, wp_addr
, wp
);
1046 if (retval
!= ERROR_OK
)
1050 if (retval
!= ERROR_OK
) {
1051 /* abort flash write algorithm on target */
1052 target_write_u32(target
, wp_addr
, 0);
1055 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
1056 num_reg_params
, reg_params
,
1061 if (retval2
!= ERROR_OK
) {
1062 LOG_ERROR("error waiting for target flash write algorithm");
1066 if (retval
== ERROR_OK
) {
1067 /* check if algorithm set rp = 0 after fifo writer loop finished */
1068 retval
= target_read_u32(target
, rp_addr
, &rp
);
1069 if (retval
== ERROR_OK
&& rp
== 0) {
1070 LOG_ERROR("flash write algorithm aborted by target");
1071 retval
= ERROR_FLASH_OPERATION_FAILED
;
1078 int target_read_memory(struct target
*target
,
1079 target_addr_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1081 if (!target_was_examined(target
)) {
1082 LOG_ERROR("Target not examined yet");
1085 if (!target
->type
->read_memory
) {
1086 LOG_ERROR("Target %s doesn't support read_memory", target_name(target
));
1089 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
1092 int target_read_phys_memory(struct target
*target
,
1093 target_addr_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1095 if (!target_was_examined(target
)) {
1096 LOG_ERROR("Target not examined yet");
1099 if (!target
->type
->read_phys_memory
) {
1100 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target
));
1103 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
1106 int target_write_memory(struct target
*target
,
1107 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1109 if (!target_was_examined(target
)) {
1110 LOG_ERROR("Target not examined yet");
1113 if (!target
->type
->write_memory
) {
1114 LOG_ERROR("Target %s doesn't support write_memory", target_name(target
));
1117 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
1120 int target_write_phys_memory(struct target
*target
,
1121 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1123 if (!target_was_examined(target
)) {
1124 LOG_ERROR("Target not examined yet");
1127 if (!target
->type
->write_phys_memory
) {
1128 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target
));
1131 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
1134 int target_add_breakpoint(struct target
*target
,
1135 struct breakpoint
*breakpoint
)
1137 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
1138 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target
));
1139 return ERROR_TARGET_NOT_HALTED
;
1141 return target
->type
->add_breakpoint(target
, breakpoint
);
1144 int target_add_context_breakpoint(struct target
*target
,
1145 struct breakpoint
*breakpoint
)
1147 if (target
->state
!= TARGET_HALTED
) {
1148 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target
));
1149 return ERROR_TARGET_NOT_HALTED
;
1151 return target
->type
->add_context_breakpoint(target
, breakpoint
);
1154 int target_add_hybrid_breakpoint(struct target
*target
,
1155 struct breakpoint
*breakpoint
)
1157 if (target
->state
!= TARGET_HALTED
) {
1158 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target
));
1159 return ERROR_TARGET_NOT_HALTED
;
1161 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
1164 int target_remove_breakpoint(struct target
*target
,
1165 struct breakpoint
*breakpoint
)
1167 return target
->type
->remove_breakpoint(target
, breakpoint
);
1170 int target_add_watchpoint(struct target
*target
,
1171 struct watchpoint
*watchpoint
)
1173 if (target
->state
!= TARGET_HALTED
) {
1174 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target
));
1175 return ERROR_TARGET_NOT_HALTED
;
1177 return target
->type
->add_watchpoint(target
, watchpoint
);
1179 int target_remove_watchpoint(struct target
*target
,
1180 struct watchpoint
*watchpoint
)
1182 return target
->type
->remove_watchpoint(target
, watchpoint
);
1184 int target_hit_watchpoint(struct target
*target
,
1185 struct watchpoint
**hit_watchpoint
)
1187 if (target
->state
!= TARGET_HALTED
) {
1188 LOG_WARNING("target %s is not halted (hit watchpoint)", target
->cmd_name
);
1189 return ERROR_TARGET_NOT_HALTED
;
1192 if (target
->type
->hit_watchpoint
== NULL
) {
1193 /* For backward compatible, if hit_watchpoint is not implemented,
1194 * return ERROR_FAIL such that gdb_server will not take the nonsense
1199 return target
->type
->hit_watchpoint(target
, hit_watchpoint
);
1202 const char *target_get_gdb_arch(struct target
*target
)
1204 if (target
->type
->get_gdb_arch
== NULL
)
1206 return target
->type
->get_gdb_arch(target
);
1209 int target_get_gdb_reg_list(struct target
*target
,
1210 struct reg
**reg_list
[], int *reg_list_size
,
1211 enum target_register_class reg_class
)
1213 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
, reg_class
);
1216 bool target_supports_gdb_connection(struct target
*target
)
1219 * based on current code, we can simply exclude all the targets that
1220 * don't provide get_gdb_reg_list; this could change with new targets.
1222 return !!target
->type
->get_gdb_reg_list
;
1225 int target_step(struct target
*target
,
1226 int current
, target_addr_t address
, int handle_breakpoints
)
1228 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
1231 int target_get_gdb_fileio_info(struct target
*target
, struct gdb_fileio_info
*fileio_info
)
1233 if (target
->state
!= TARGET_HALTED
) {
1234 LOG_WARNING("target %s is not halted (gdb fileio)", target
->cmd_name
);
1235 return ERROR_TARGET_NOT_HALTED
;
1237 return target
->type
->get_gdb_fileio_info(target
, fileio_info
);
1240 int target_gdb_fileio_end(struct target
*target
, int retcode
, int fileio_errno
, bool ctrl_c
)
1242 if (target
->state
!= TARGET_HALTED
) {
1243 LOG_WARNING("target %s is not halted (gdb fileio end)", target
->cmd_name
);
1244 return ERROR_TARGET_NOT_HALTED
;
1246 return target
->type
->gdb_fileio_end(target
, retcode
, fileio_errno
, ctrl_c
);
1249 int target_profiling(struct target
*target
, uint32_t *samples
,
1250 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1252 if (target
->state
!= TARGET_HALTED
) {
1253 LOG_WARNING("target %s is not halted (profiling)", target
->cmd_name
);
1254 return ERROR_TARGET_NOT_HALTED
;
1256 return target
->type
->profiling(target
, samples
, max_num_samples
,
1257 num_samples
, seconds
);
1261 * Reset the @c examined flag for the given target.
1262 * Pure paranoia -- targets are zeroed on allocation.
1264 static void target_reset_examined(struct target
*target
)
1266 target
->examined
= false;
1269 static int handle_target(void *priv
);
1271 static int target_init_one(struct command_context
*cmd_ctx
,
1272 struct target
*target
)
1274 target_reset_examined(target
);
1276 struct target_type
*type
= target
->type
;
1277 if (type
->examine
== NULL
)
1278 type
->examine
= default_examine
;
1280 if (type
->check_reset
== NULL
)
1281 type
->check_reset
= default_check_reset
;
1283 assert(type
->init_target
!= NULL
);
1285 int retval
= type
->init_target(cmd_ctx
, target
);
1286 if (ERROR_OK
!= retval
) {
1287 LOG_ERROR("target '%s' init failed", target_name(target
));
1291 /* Sanity-check MMU support ... stub in what we must, to help
1292 * implement it in stages, but warn if we need to do so.
1295 if (type
->virt2phys
== NULL
) {
1296 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1297 type
->virt2phys
= identity_virt2phys
;
1300 /* Make sure no-MMU targets all behave the same: make no
1301 * distinction between physical and virtual addresses, and
1302 * ensure that virt2phys() is always an identity mapping.
1304 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1305 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1308 type
->write_phys_memory
= type
->write_memory
;
1309 type
->read_phys_memory
= type
->read_memory
;
1310 type
->virt2phys
= identity_virt2phys
;
1313 if (target
->type
->read_buffer
== NULL
)
1314 target
->type
->read_buffer
= target_read_buffer_default
;
1316 if (target
->type
->write_buffer
== NULL
)
1317 target
->type
->write_buffer
= target_write_buffer_default
;
1319 if (target
->type
->get_gdb_fileio_info
== NULL
)
1320 target
->type
->get_gdb_fileio_info
= target_get_gdb_fileio_info_default
;
1322 if (target
->type
->gdb_fileio_end
== NULL
)
1323 target
->type
->gdb_fileio_end
= target_gdb_fileio_end_default
;
1325 if (target
->type
->profiling
== NULL
)
1326 target
->type
->profiling
= target_profiling_default
;
1331 static int target_init(struct command_context
*cmd_ctx
)
1333 struct target
*target
;
1336 for (target
= all_targets
; target
; target
= target
->next
) {
1337 retval
= target_init_one(cmd_ctx
, target
);
1338 if (ERROR_OK
!= retval
)
1345 retval
= target_register_user_commands(cmd_ctx
);
1346 if (ERROR_OK
!= retval
)
1349 retval
= target_register_timer_callback(&handle_target
,
1350 polling_interval
, 1, cmd_ctx
->interp
);
1351 if (ERROR_OK
!= retval
)
1357 COMMAND_HANDLER(handle_target_init_command
)
1362 return ERROR_COMMAND_SYNTAX_ERROR
;
1364 static bool target_initialized
;
1365 if (target_initialized
) {
1366 LOG_INFO("'target init' has already been called");
1369 target_initialized
= true;
1371 retval
= command_run_line(CMD_CTX
, "init_targets");
1372 if (ERROR_OK
!= retval
)
1375 retval
= command_run_line(CMD_CTX
, "init_target_events");
1376 if (ERROR_OK
!= retval
)
1379 retval
= command_run_line(CMD_CTX
, "init_board");
1380 if (ERROR_OK
!= retval
)
1383 LOG_DEBUG("Initializing targets...");
1384 return target_init(CMD_CTX
);
1387 int target_register_event_callback(int (*callback
)(struct target
*target
,
1388 enum target_event event
, void *priv
), void *priv
)
1390 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1392 if (callback
== NULL
)
1393 return ERROR_COMMAND_SYNTAX_ERROR
;
1396 while ((*callbacks_p
)->next
)
1397 callbacks_p
= &((*callbacks_p
)->next
);
1398 callbacks_p
= &((*callbacks_p
)->next
);
1401 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1402 (*callbacks_p
)->callback
= callback
;
1403 (*callbacks_p
)->priv
= priv
;
1404 (*callbacks_p
)->next
= NULL
;
1409 int target_register_reset_callback(int (*callback
)(struct target
*target
,
1410 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1412 struct target_reset_callback
*entry
;
1414 if (callback
== NULL
)
1415 return ERROR_COMMAND_SYNTAX_ERROR
;
1417 entry
= malloc(sizeof(struct target_reset_callback
));
1418 if (entry
== NULL
) {
1419 LOG_ERROR("error allocating buffer for reset callback entry");
1420 return ERROR_COMMAND_SYNTAX_ERROR
;
1423 entry
->callback
= callback
;
1425 list_add(&entry
->list
, &target_reset_callback_list
);
1431 int target_register_trace_callback(int (*callback
)(struct target
*target
,
1432 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1434 struct target_trace_callback
*entry
;
1436 if (callback
== NULL
)
1437 return ERROR_COMMAND_SYNTAX_ERROR
;
1439 entry
= malloc(sizeof(struct target_trace_callback
));
1440 if (entry
== NULL
) {
1441 LOG_ERROR("error allocating buffer for trace callback entry");
1442 return ERROR_COMMAND_SYNTAX_ERROR
;
1445 entry
->callback
= callback
;
1447 list_add(&entry
->list
, &target_trace_callback_list
);
1453 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
1455 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1457 if (callback
== NULL
)
1458 return ERROR_COMMAND_SYNTAX_ERROR
;
1461 while ((*callbacks_p
)->next
)
1462 callbacks_p
= &((*callbacks_p
)->next
);
1463 callbacks_p
= &((*callbacks_p
)->next
);
1466 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1467 (*callbacks_p
)->callback
= callback
;
1468 (*callbacks_p
)->periodic
= periodic
;
1469 (*callbacks_p
)->time_ms
= time_ms
;
1470 (*callbacks_p
)->removed
= false;
1472 gettimeofday(&(*callbacks_p
)->when
, NULL
);
1473 timeval_add_time(&(*callbacks_p
)->when
, 0, time_ms
* 1000);
1475 (*callbacks_p
)->priv
= priv
;
1476 (*callbacks_p
)->next
= NULL
;
1481 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1482 enum target_event event
, void *priv
), void *priv
)
1484 struct target_event_callback
**p
= &target_event_callbacks
;
1485 struct target_event_callback
*c
= target_event_callbacks
;
1487 if (callback
== NULL
)
1488 return ERROR_COMMAND_SYNTAX_ERROR
;
1491 struct target_event_callback
*next
= c
->next
;
1492 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1504 int target_unregister_reset_callback(int (*callback
)(struct target
*target
,
1505 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1507 struct target_reset_callback
*entry
;
1509 if (callback
== NULL
)
1510 return ERROR_COMMAND_SYNTAX_ERROR
;
1512 list_for_each_entry(entry
, &target_reset_callback_list
, list
) {
1513 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1514 list_del(&entry
->list
);
1523 int target_unregister_trace_callback(int (*callback
)(struct target
*target
,
1524 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1526 struct target_trace_callback
*entry
;
1528 if (callback
== NULL
)
1529 return ERROR_COMMAND_SYNTAX_ERROR
;
1531 list_for_each_entry(entry
, &target_trace_callback_list
, list
) {
1532 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1533 list_del(&entry
->list
);
1542 int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1544 if (callback
== NULL
)
1545 return ERROR_COMMAND_SYNTAX_ERROR
;
1547 for (struct target_timer_callback
*c
= target_timer_callbacks
;
1549 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1558 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1560 struct target_event_callback
*callback
= target_event_callbacks
;
1561 struct target_event_callback
*next_callback
;
1563 if (event
== TARGET_EVENT_HALTED
) {
1564 /* execute early halted first */
1565 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1568 LOG_DEBUG("target event %i (%s)", event
,
1569 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1571 target_handle_event(target
, event
);
1574 next_callback
= callback
->next
;
1575 callback
->callback(target
, event
, callback
->priv
);
1576 callback
= next_callback
;
1582 int target_call_reset_callbacks(struct target
*target
, enum target_reset_mode reset_mode
)
1584 struct target_reset_callback
*callback
;
1586 LOG_DEBUG("target reset %i (%s)", reset_mode
,
1587 Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
);
1589 list_for_each_entry(callback
, &target_reset_callback_list
, list
)
1590 callback
->callback(target
, reset_mode
, callback
->priv
);
1595 int target_call_trace_callbacks(struct target
*target
, size_t len
, uint8_t *data
)
1597 struct target_trace_callback
*callback
;
1599 list_for_each_entry(callback
, &target_trace_callback_list
, list
)
1600 callback
->callback(target
, len
, data
, callback
->priv
);
1605 static int target_timer_callback_periodic_restart(
1606 struct target_timer_callback
*cb
, struct timeval
*now
)
1609 timeval_add_time(&cb
->when
, 0, cb
->time_ms
* 1000L);
1613 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1614 struct timeval
*now
)
1616 cb
->callback(cb
->priv
);
1619 return target_timer_callback_periodic_restart(cb
, now
);
1621 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1624 static int target_call_timer_callbacks_check_time(int checktime
)
1626 static bool callback_processing
;
1628 /* Do not allow nesting */
1629 if (callback_processing
)
1632 callback_processing
= true;
1637 gettimeofday(&now
, NULL
);
1639 /* Store an address of the place containing a pointer to the
1640 * next item; initially, that's a standalone "root of the
1641 * list" variable. */
1642 struct target_timer_callback
**callback
= &target_timer_callbacks
;
1644 if ((*callback
)->removed
) {
1645 struct target_timer_callback
*p
= *callback
;
1646 *callback
= (*callback
)->next
;
1651 bool call_it
= (*callback
)->callback
&&
1652 ((!checktime
&& (*callback
)->periodic
) ||
1653 timeval_compare(&now
, &(*callback
)->when
) >= 0);
1656 target_call_timer_callback(*callback
, &now
);
1658 callback
= &(*callback
)->next
;
1661 callback_processing
= false;
1665 int target_call_timer_callbacks(void)
1667 return target_call_timer_callbacks_check_time(1);
1670 /* invoke periodic callbacks immediately */
1671 int target_call_timer_callbacks_now(void)
1673 return target_call_timer_callbacks_check_time(0);
1676 /* Prints the working area layout for debug purposes */
1677 static void print_wa_layout(struct target
*target
)
1679 struct working_area
*c
= target
->working_areas
;
1682 LOG_DEBUG("%c%c " TARGET_ADDR_FMT
"-" TARGET_ADDR_FMT
" (%" PRIu32
" bytes)",
1683 c
->backup
? 'b' : ' ', c
->free
? ' ' : '*',
1684 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1689 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1690 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1692 assert(area
->free
); /* Shouldn't split an allocated area */
1693 assert(size
<= area
->size
); /* Caller should guarantee this */
1695 /* Split only if not already the right size */
1696 if (size
< area
->size
) {
1697 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1702 new_wa
->next
= area
->next
;
1703 new_wa
->size
= area
->size
- size
;
1704 new_wa
->address
= area
->address
+ size
;
1705 new_wa
->backup
= NULL
;
1706 new_wa
->user
= NULL
;
1707 new_wa
->free
= true;
1709 area
->next
= new_wa
;
1712 /* If backup memory was allocated to this area, it has the wrong size
1713 * now so free it and it will be reallocated if/when needed */
1716 area
->backup
= NULL
;
1721 /* Merge all adjacent free areas into one */
1722 static void target_merge_working_areas(struct target
*target
)
1724 struct working_area
*c
= target
->working_areas
;
1726 while (c
&& c
->next
) {
1727 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
1729 /* Find two adjacent free areas */
1730 if (c
->free
&& c
->next
->free
) {
1731 /* Merge the last into the first */
1732 c
->size
+= c
->next
->size
;
1734 /* Remove the last */
1735 struct working_area
*to_be_freed
= c
->next
;
1736 c
->next
= c
->next
->next
;
1737 if (to_be_freed
->backup
)
1738 free(to_be_freed
->backup
);
1741 /* If backup memory was allocated to the remaining area, it's has
1742 * the wrong size now */
1753 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
1755 /* Reevaluate working area address based on MMU state*/
1756 if (target
->working_areas
== NULL
) {
1760 retval
= target
->type
->mmu(target
, &enabled
);
1761 if (retval
!= ERROR_OK
)
1765 if (target
->working_area_phys_spec
) {
1766 LOG_DEBUG("MMU disabled, using physical "
1767 "address for working memory " TARGET_ADDR_FMT
,
1768 target
->working_area_phys
);
1769 target
->working_area
= target
->working_area_phys
;
1771 LOG_ERROR("No working memory available. "
1772 "Specify -work-area-phys to target.");
1773 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1776 if (target
->working_area_virt_spec
) {
1777 LOG_DEBUG("MMU enabled, using virtual "
1778 "address for working memory " TARGET_ADDR_FMT
,
1779 target
->working_area_virt
);
1780 target
->working_area
= target
->working_area_virt
;
1782 LOG_ERROR("No working memory available. "
1783 "Specify -work-area-virt to target.");
1784 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1788 /* Set up initial working area on first call */
1789 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1791 new_wa
->next
= NULL
;
1792 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
1793 new_wa
->address
= target
->working_area
;
1794 new_wa
->backup
= NULL
;
1795 new_wa
->user
= NULL
;
1796 new_wa
->free
= true;
1799 target
->working_areas
= new_wa
;
1802 /* only allocate multiples of 4 byte */
1804 size
= (size
+ 3) & (~3UL);
1806 struct working_area
*c
= target
->working_areas
;
1808 /* Find the first large enough working area */
1810 if (c
->free
&& c
->size
>= size
)
1816 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1818 /* Split the working area into the requested size */
1819 target_split_working_area(c
, size
);
1821 LOG_DEBUG("allocated new working area of %" PRIu32
" bytes at address " TARGET_ADDR_FMT
,
1824 if (target
->backup_working_area
) {
1825 if (c
->backup
== NULL
) {
1826 c
->backup
= malloc(c
->size
);
1827 if (c
->backup
== NULL
)
1831 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
1832 if (retval
!= ERROR_OK
)
1836 /* mark as used, and return the new (reused) area */
1843 print_wa_layout(target
);
1848 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
1852 retval
= target_alloc_working_area_try(target
, size
, area
);
1853 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
1854 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
1859 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
1861 int retval
= ERROR_OK
;
1863 if (target
->backup_working_area
&& area
->backup
!= NULL
) {
1864 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
1865 if (retval
!= ERROR_OK
)
1866 LOG_ERROR("failed to restore %" PRIu32
" bytes of working area at address " TARGET_ADDR_FMT
,
1867 area
->size
, area
->address
);
1873 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1874 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
1876 int retval
= ERROR_OK
;
1882 retval
= target_restore_working_area(target
, area
);
1883 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1884 if (retval
!= ERROR_OK
)
1890 LOG_DEBUG("freed %" PRIu32
" bytes of working area at address " TARGET_ADDR_FMT
,
1891 area
->size
, area
->address
);
1893 /* mark user pointer invalid */
1894 /* TODO: Is this really safe? It points to some previous caller's memory.
1895 * How could we know that the area pointer is still in that place and not
1896 * some other vital data? What's the purpose of this, anyway? */
1900 target_merge_working_areas(target
);
1902 print_wa_layout(target
);
1907 int target_free_working_area(struct target
*target
, struct working_area
*area
)
1909 return target_free_working_area_restore(target
, area
, 1);
1912 static void target_destroy(struct target
*target
)
1914 if (target
->type
->deinit_target
)
1915 target
->type
->deinit_target(target
);
1917 if (target
->semihosting
)
1918 free(target
->semihosting
);
1920 jtag_unregister_event_callback(jtag_enable_callback
, target
);
1922 struct target_event_action
*teap
= target
->event_action
;
1924 struct target_event_action
*next
= teap
->next
;
1925 Jim_DecrRefCount(teap
->interp
, teap
->body
);
1930 target_free_all_working_areas(target
);
1931 /* Now we have none or only one working area marked as free */
1932 if (target
->working_areas
) {
1933 free(target
->working_areas
->backup
);
1934 free(target
->working_areas
);
1937 /* release the targets SMP list */
1939 struct target_list
*head
= target
->head
;
1940 while (head
!= NULL
) {
1941 struct target_list
*pos
= head
->next
;
1942 head
->target
->smp
= 0;
1949 free(target
->gdb_port_override
);
1951 free(target
->trace_info
);
1952 free(target
->fileio_info
);
1953 free(target
->cmd_name
);
1957 void target_quit(void)
1959 struct target_event_callback
*pe
= target_event_callbacks
;
1961 struct target_event_callback
*t
= pe
->next
;
1965 target_event_callbacks
= NULL
;
1967 struct target_timer_callback
*pt
= target_timer_callbacks
;
1969 struct target_timer_callback
*t
= pt
->next
;
1973 target_timer_callbacks
= NULL
;
1975 for (struct target
*target
= all_targets
; target
;) {
1979 target_destroy(target
);
1986 /* free resources and restore memory, if restoring memory fails,
1987 * free up resources anyway
1989 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
1991 struct working_area
*c
= target
->working_areas
;
1993 LOG_DEBUG("freeing all working areas");
1995 /* Loop through all areas, restoring the allocated ones and marking them as free */
1999 target_restore_working_area(target
, c
);
2001 *c
->user
= NULL
; /* Same as above */
2007 /* Run a merge pass to combine all areas into one */
2008 target_merge_working_areas(target
);
2010 print_wa_layout(target
);
2013 void target_free_all_working_areas(struct target
*target
)
2015 target_free_all_working_areas_restore(target
, 1);
2018 /* Find the largest number of bytes that can be allocated */
2019 uint32_t target_get_working_area_avail(struct target
*target
)
2021 struct working_area
*c
= target
->working_areas
;
2022 uint32_t max_size
= 0;
2025 return target
->working_area_size
;
2028 if (c
->free
&& max_size
< c
->size
)
2037 int target_arch_state(struct target
*target
)
2040 if (target
== NULL
) {
2041 LOG_WARNING("No target has been configured");
2045 if (target
->state
!= TARGET_HALTED
)
2048 retval
= target
->type
->arch_state(target
);
2052 static int target_get_gdb_fileio_info_default(struct target
*target
,
2053 struct gdb_fileio_info
*fileio_info
)
2055 /* If target does not support semi-hosting function, target
2056 has no need to provide .get_gdb_fileio_info callback.
2057 It just return ERROR_FAIL and gdb_server will return "Txx"
2058 as target halted every time. */
2062 static int target_gdb_fileio_end_default(struct target
*target
,
2063 int retcode
, int fileio_errno
, bool ctrl_c
)
2068 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
2069 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
2071 struct timeval timeout
, now
;
2073 gettimeofday(&timeout
, NULL
);
2074 timeval_add_time(&timeout
, seconds
, 0);
2076 LOG_INFO("Starting profiling. Halting and resuming the"
2077 " target as often as we can...");
2079 uint32_t sample_count
= 0;
2080 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2081 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
2083 int retval
= ERROR_OK
;
2085 target_poll(target
);
2086 if (target
->state
== TARGET_HALTED
) {
2087 uint32_t t
= buf_get_u32(reg
->value
, 0, 32);
2088 samples
[sample_count
++] = t
;
2089 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2090 retval
= target_resume(target
, 1, 0, 0, 0);
2091 target_poll(target
);
2092 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2093 } else if (target
->state
== TARGET_RUNNING
) {
2094 /* We want to quickly sample the PC. */
2095 retval
= target_halt(target
);
2097 LOG_INFO("Target not halted or running");
2102 if (retval
!= ERROR_OK
)
2105 gettimeofday(&now
, NULL
);
2106 if ((sample_count
>= max_num_samples
) || timeval_compare(&now
, &timeout
) >= 0) {
2107 LOG_INFO("Profiling completed. %" PRIu32
" samples.", sample_count
);
2112 *num_samples
= sample_count
;
2116 /* Single aligned words are guaranteed to use 16 or 32 bit access
2117 * mode respectively, otherwise data is handled as quickly as
2120 int target_write_buffer(struct target
*target
, target_addr_t address
, uint32_t size
, const uint8_t *buffer
)
2122 LOG_DEBUG("writing buffer of %" PRIi32
" byte at " TARGET_ADDR_FMT
,
2125 if (!target_was_examined(target
)) {
2126 LOG_ERROR("Target not examined yet");
2133 if ((address
+ size
- 1) < address
) {
2134 /* GDB can request this when e.g. PC is 0xfffffffc */
2135 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT
", 0x%08" PRIx32
")",
2141 return target
->type
->write_buffer(target
, address
, size
, buffer
);
2144 static int target_write_buffer_default(struct target
*target
,
2145 target_addr_t address
, uint32_t count
, const uint8_t *buffer
)
2149 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2150 * will have something to do with the size we leave to it. */
2151 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2152 if (address
& size
) {
2153 int retval
= target_write_memory(target
, address
, size
, 1, buffer
);
2154 if (retval
!= ERROR_OK
)
2162 /* Write the data with as large access size as possible. */
2163 for (; size
> 0; size
/= 2) {
2164 uint32_t aligned
= count
- count
% size
;
2166 int retval
= target_write_memory(target
, address
, size
, aligned
/ size
, buffer
);
2167 if (retval
!= ERROR_OK
)
2178 /* Single aligned words are guaranteed to use 16 or 32 bit access
2179 * mode respectively, otherwise data is handled as quickly as
2182 int target_read_buffer(struct target
*target
, target_addr_t address
, uint32_t size
, uint8_t *buffer
)
2184 LOG_DEBUG("reading buffer of %" PRIi32
" byte at " TARGET_ADDR_FMT
,
2187 if (!target_was_examined(target
)) {
2188 LOG_ERROR("Target not examined yet");
2195 if ((address
+ size
- 1) < address
) {
2196 /* GDB can request this when e.g. PC is 0xfffffffc */
2197 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT
", 0x%08" PRIx32
")",
2203 return target
->type
->read_buffer(target
, address
, size
, buffer
);
2206 static int target_read_buffer_default(struct target
*target
, target_addr_t address
, uint32_t count
, uint8_t *buffer
)
2210 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2211 * will have something to do with the size we leave to it. */
2212 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2213 if (address
& size
) {
2214 int retval
= target_read_memory(target
, address
, size
, 1, buffer
);
2215 if (retval
!= ERROR_OK
)
2223 /* Read the data with as large access size as possible. */
2224 for (; size
> 0; size
/= 2) {
2225 uint32_t aligned
= count
- count
% size
;
2227 int retval
= target_read_memory(target
, address
, size
, aligned
/ size
, buffer
);
2228 if (retval
!= ERROR_OK
)
2239 int target_checksum_memory(struct target
*target
, target_addr_t address
, uint32_t size
, uint32_t* crc
)
2244 uint32_t checksum
= 0;
2245 if (!target_was_examined(target
)) {
2246 LOG_ERROR("Target not examined yet");
2250 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
2251 if (retval
!= ERROR_OK
) {
2252 buffer
= malloc(size
);
2253 if (buffer
== NULL
) {
2254 LOG_ERROR("error allocating buffer for section (%" PRId32
" bytes)", size
);
2255 return ERROR_COMMAND_SYNTAX_ERROR
;
2257 retval
= target_read_buffer(target
, address
, size
, buffer
);
2258 if (retval
!= ERROR_OK
) {
2263 /* convert to target endianness */
2264 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
2265 uint32_t target_data
;
2266 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
2267 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
2270 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
2279 int target_blank_check_memory(struct target
*target
,
2280 struct target_memory_check_block
*blocks
, int num_blocks
,
2281 uint8_t erased_value
)
2283 if (!target_was_examined(target
)) {
2284 LOG_ERROR("Target not examined yet");
2288 if (target
->type
->blank_check_memory
== NULL
)
2289 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2291 return target
->type
->blank_check_memory(target
, blocks
, num_blocks
, erased_value
);
2294 int target_read_u64(struct target
*target
, target_addr_t address
, uint64_t *value
)
2296 uint8_t value_buf
[8];
2297 if (!target_was_examined(target
)) {
2298 LOG_ERROR("Target not examined yet");
2302 int retval
= target_read_memory(target
, address
, 8, 1, value_buf
);
2304 if (retval
== ERROR_OK
) {
2305 *value
= target_buffer_get_u64(target
, value_buf
);
2306 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2311 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2318 int target_read_u32(struct target
*target
, target_addr_t address
, uint32_t *value
)
2320 uint8_t value_buf
[4];
2321 if (!target_was_examined(target
)) {
2322 LOG_ERROR("Target not examined yet");
2326 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
2328 if (retval
== ERROR_OK
) {
2329 *value
= target_buffer_get_u32(target
, value_buf
);
2330 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2335 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2342 int target_read_u16(struct target
*target
, target_addr_t address
, uint16_t *value
)
2344 uint8_t value_buf
[2];
2345 if (!target_was_examined(target
)) {
2346 LOG_ERROR("Target not examined yet");
2350 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
2352 if (retval
== ERROR_OK
) {
2353 *value
= target_buffer_get_u16(target
, value_buf
);
2354 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%4.4" PRIx16
,
2359 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2366 int target_read_u8(struct target
*target
, target_addr_t address
, uint8_t *value
)
2368 if (!target_was_examined(target
)) {
2369 LOG_ERROR("Target not examined yet");
2373 int retval
= target_read_memory(target
, address
, 1, 1, value
);
2375 if (retval
== ERROR_OK
) {
2376 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2381 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2388 int target_write_u64(struct target
*target
, target_addr_t address
, uint64_t value
)
2391 uint8_t value_buf
[8];
2392 if (!target_was_examined(target
)) {
2393 LOG_ERROR("Target not examined yet");
2397 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2401 target_buffer_set_u64(target
, value_buf
, value
);
2402 retval
= target_write_memory(target
, address
, 8, 1, value_buf
);
2403 if (retval
!= ERROR_OK
)
2404 LOG_DEBUG("failed: %i", retval
);
2409 int target_write_u32(struct target
*target
, target_addr_t address
, uint32_t value
)
2412 uint8_t value_buf
[4];
2413 if (!target_was_examined(target
)) {
2414 LOG_ERROR("Target not examined yet");
2418 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2422 target_buffer_set_u32(target
, value_buf
, value
);
2423 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
2424 if (retval
!= ERROR_OK
)
2425 LOG_DEBUG("failed: %i", retval
);
2430 int target_write_u16(struct target
*target
, target_addr_t address
, uint16_t value
)
2433 uint8_t value_buf
[2];
2434 if (!target_was_examined(target
)) {
2435 LOG_ERROR("Target not examined yet");
2439 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx16
,
2443 target_buffer_set_u16(target
, value_buf
, value
);
2444 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
2445 if (retval
!= ERROR_OK
)
2446 LOG_DEBUG("failed: %i", retval
);
2451 int target_write_u8(struct target
*target
, target_addr_t address
, uint8_t value
)
2454 if (!target_was_examined(target
)) {
2455 LOG_ERROR("Target not examined yet");
2459 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2462 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2463 if (retval
!= ERROR_OK
)
2464 LOG_DEBUG("failed: %i", retval
);
2469 int target_write_phys_u64(struct target
*target
, target_addr_t address
, uint64_t value
)
2472 uint8_t value_buf
[8];
2473 if (!target_was_examined(target
)) {
2474 LOG_ERROR("Target not examined yet");
2478 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2482 target_buffer_set_u64(target
, value_buf
, value
);
2483 retval
= target_write_phys_memory(target
, address
, 8, 1, value_buf
);
2484 if (retval
!= ERROR_OK
)
2485 LOG_DEBUG("failed: %i", retval
);
2490 int target_write_phys_u32(struct target
*target
, target_addr_t address
, uint32_t value
)
2493 uint8_t value_buf
[4];
2494 if (!target_was_examined(target
)) {
2495 LOG_ERROR("Target not examined yet");
2499 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2503 target_buffer_set_u32(target
, value_buf
, value
);
2504 retval
= target_write_phys_memory(target
, address
, 4, 1, value_buf
);
2505 if (retval
!= ERROR_OK
)
2506 LOG_DEBUG("failed: %i", retval
);
2511 int target_write_phys_u16(struct target
*target
, target_addr_t address
, uint16_t value
)
2514 uint8_t value_buf
[2];
2515 if (!target_was_examined(target
)) {
2516 LOG_ERROR("Target not examined yet");
2520 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx16
,
2524 target_buffer_set_u16(target
, value_buf
, value
);
2525 retval
= target_write_phys_memory(target
, address
, 2, 1, value_buf
);
2526 if (retval
!= ERROR_OK
)
2527 LOG_DEBUG("failed: %i", retval
);
2532 int target_write_phys_u8(struct target
*target
, target_addr_t address
, uint8_t value
)
2535 if (!target_was_examined(target
)) {
2536 LOG_ERROR("Target not examined yet");
2540 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2543 retval
= target_write_phys_memory(target
, address
, 1, 1, &value
);
2544 if (retval
!= ERROR_OK
)
2545 LOG_DEBUG("failed: %i", retval
);
2550 static int find_target(struct command_context
*cmd_ctx
, const char *name
)
2552 struct target
*target
= get_target(name
);
2553 if (target
== NULL
) {
2554 LOG_ERROR("Target: %s is unknown, try one of:\n", name
);
2557 if (!target
->tap
->enabled
) {
2558 LOG_USER("Target: TAP %s is disabled, "
2559 "can't be the current target\n",
2560 target
->tap
->dotted_name
);
2564 cmd_ctx
->current_target
= target
;
2565 if (cmd_ctx
->current_target_override
)
2566 cmd_ctx
->current_target_override
= target
;
2572 COMMAND_HANDLER(handle_targets_command
)
2574 int retval
= ERROR_OK
;
2575 if (CMD_ARGC
== 1) {
2576 retval
= find_target(CMD_CTX
, CMD_ARGV
[0]);
2577 if (retval
== ERROR_OK
) {
2583 struct target
*target
= all_targets
;
2584 command_print(CMD_CTX
, " TargetName Type Endian TapName State ");
2585 command_print(CMD_CTX
, "-- ------------------ ---------- ------ ------------------ ------------");
2590 if (target
->tap
->enabled
)
2591 state
= target_state_name(target
);
2593 state
= "tap-disabled";
2595 if (CMD_CTX
->current_target
== target
)
2598 /* keep columns lined up to match the headers above */
2599 command_print(CMD_CTX
,
2600 "%2d%c %-18s %-10s %-6s %-18s %s",
2601 target
->target_number
,
2603 target_name(target
),
2604 target_type_name(target
),
2605 Jim_Nvp_value2name_simple(nvp_target_endian
,
2606 target
->endianness
)->name
,
2607 target
->tap
->dotted_name
,
2609 target
= target
->next
;
2615 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2617 static int powerDropout
;
2618 static int srstAsserted
;
2620 static int runPowerRestore
;
2621 static int runPowerDropout
;
2622 static int runSrstAsserted
;
2623 static int runSrstDeasserted
;
2625 static int sense_handler(void)
2627 static int prevSrstAsserted
;
2628 static int prevPowerdropout
;
2630 int retval
= jtag_power_dropout(&powerDropout
);
2631 if (retval
!= ERROR_OK
)
2635 powerRestored
= prevPowerdropout
&& !powerDropout
;
2637 runPowerRestore
= 1;
2639 int64_t current
= timeval_ms();
2640 static int64_t lastPower
;
2641 bool waitMore
= lastPower
+ 2000 > current
;
2642 if (powerDropout
&& !waitMore
) {
2643 runPowerDropout
= 1;
2644 lastPower
= current
;
2647 retval
= jtag_srst_asserted(&srstAsserted
);
2648 if (retval
!= ERROR_OK
)
2652 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
2654 static int64_t lastSrst
;
2655 waitMore
= lastSrst
+ 2000 > current
;
2656 if (srstDeasserted
&& !waitMore
) {
2657 runSrstDeasserted
= 1;
2661 if (!prevSrstAsserted
&& srstAsserted
)
2662 runSrstAsserted
= 1;
2664 prevSrstAsserted
= srstAsserted
;
2665 prevPowerdropout
= powerDropout
;
2667 if (srstDeasserted
|| powerRestored
) {
2668 /* Other than logging the event we can't do anything here.
2669 * Issuing a reset is a particularly bad idea as we might
2670 * be inside a reset already.
2677 /* process target state changes */
2678 static int handle_target(void *priv
)
2680 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2681 int retval
= ERROR_OK
;
2683 if (!is_jtag_poll_safe()) {
2684 /* polling is disabled currently */
2688 /* we do not want to recurse here... */
2689 static int recursive
;
2693 /* danger! running these procedures can trigger srst assertions and power dropouts.
2694 * We need to avoid an infinite loop/recursion here and we do that by
2695 * clearing the flags after running these events.
2697 int did_something
= 0;
2698 if (runSrstAsserted
) {
2699 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2700 Jim_Eval(interp
, "srst_asserted");
2703 if (runSrstDeasserted
) {
2704 Jim_Eval(interp
, "srst_deasserted");
2707 if (runPowerDropout
) {
2708 LOG_INFO("Power dropout detected, running power_dropout proc.");
2709 Jim_Eval(interp
, "power_dropout");
2712 if (runPowerRestore
) {
2713 Jim_Eval(interp
, "power_restore");
2717 if (did_something
) {
2718 /* clear detect flags */
2722 /* clear action flags */
2724 runSrstAsserted
= 0;
2725 runSrstDeasserted
= 0;
2726 runPowerRestore
= 0;
2727 runPowerDropout
= 0;
2732 /* Poll targets for state changes unless that's globally disabled.
2733 * Skip targets that are currently disabled.
2735 for (struct target
*target
= all_targets
;
2736 is_jtag_poll_safe() && target
;
2737 target
= target
->next
) {
2739 if (!target_was_examined(target
))
2742 if (!target
->tap
->enabled
)
2745 if (target
->backoff
.times
> target
->backoff
.count
) {
2746 /* do not poll this time as we failed previously */
2747 target
->backoff
.count
++;
2750 target
->backoff
.count
= 0;
2752 /* only poll target if we've got power and srst isn't asserted */
2753 if (!powerDropout
&& !srstAsserted
) {
2754 /* polling may fail silently until the target has been examined */
2755 retval
= target_poll(target
);
2756 if (retval
!= ERROR_OK
) {
2757 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2758 if (target
->backoff
.times
* polling_interval
< 5000) {
2759 target
->backoff
.times
*= 2;
2760 target
->backoff
.times
++;
2763 /* Tell GDB to halt the debugger. This allows the user to
2764 * run monitor commands to handle the situation.
2766 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
2768 if (target
->backoff
.times
> 0) {
2769 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target
));
2770 target_reset_examined(target
);
2771 retval
= target_examine_one(target
);
2772 /* Target examination could have failed due to unstable connection,
2773 * but we set the examined flag anyway to repoll it later */
2774 if (retval
!= ERROR_OK
) {
2775 target
->examined
= true;
2776 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2777 target
->backoff
.times
* polling_interval
);
2782 /* Since we succeeded, we reset backoff count */
2783 target
->backoff
.times
= 0;
2790 COMMAND_HANDLER(handle_reg_command
)
2792 struct target
*target
;
2793 struct reg
*reg
= NULL
;
2799 target
= get_current_target(CMD_CTX
);
2801 /* list all available registers for the current target */
2802 if (CMD_ARGC
== 0) {
2803 struct reg_cache
*cache
= target
->reg_cache
;
2809 command_print(CMD_CTX
, "===== %s", cache
->name
);
2811 for (i
= 0, reg
= cache
->reg_list
;
2812 i
< cache
->num_regs
;
2813 i
++, reg
++, count
++) {
2814 if (reg
->exist
== false)
2816 /* only print cached values if they are valid */
2818 value
= buf_to_str(reg
->value
,
2820 command_print(CMD_CTX
,
2821 "(%i) %s (/%" PRIu32
"): 0x%s%s",
2829 command_print(CMD_CTX
, "(%i) %s (/%" PRIu32
")",
2834 cache
= cache
->next
;
2840 /* access a single register by its ordinal number */
2841 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
2843 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
2845 struct reg_cache
*cache
= target
->reg_cache
;
2849 for (i
= 0; i
< cache
->num_regs
; i
++) {
2850 if (count
++ == num
) {
2851 reg
= &cache
->reg_list
[i
];
2857 cache
= cache
->next
;
2861 command_print(CMD_CTX
, "%i is out of bounds, the current target "
2862 "has only %i registers (0 - %i)", num
, count
, count
- 1);
2866 /* access a single register by its name */
2867 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], 1);
2873 assert(reg
!= NULL
); /* give clang a hint that we *know* reg is != NULL here */
2878 /* display a register */
2879 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
2880 && (CMD_ARGV
[1][0] <= '9')))) {
2881 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
2884 if (reg
->valid
== 0)
2885 reg
->type
->get(reg
);
2886 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2887 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2892 /* set register value */
2893 if (CMD_ARGC
== 2) {
2894 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
2897 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
2899 reg
->type
->set(reg
, buf
);
2901 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2902 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2910 return ERROR_COMMAND_SYNTAX_ERROR
;
2913 command_print(CMD_CTX
, "register %s not found in current target", CMD_ARGV
[0]);
2917 COMMAND_HANDLER(handle_poll_command
)
2919 int retval
= ERROR_OK
;
2920 struct target
*target
= get_current_target(CMD_CTX
);
2922 if (CMD_ARGC
== 0) {
2923 command_print(CMD_CTX
, "background polling: %s",
2924 jtag_poll_get_enabled() ? "on" : "off");
2925 command_print(CMD_CTX
, "TAP: %s (%s)",
2926 target
->tap
->dotted_name
,
2927 target
->tap
->enabled
? "enabled" : "disabled");
2928 if (!target
->tap
->enabled
)
2930 retval
= target_poll(target
);
2931 if (retval
!= ERROR_OK
)
2933 retval
= target_arch_state(target
);
2934 if (retval
!= ERROR_OK
)
2936 } else if (CMD_ARGC
== 1) {
2938 COMMAND_PARSE_ON_OFF(CMD_ARGV
[0], enable
);
2939 jtag_poll_set_enabled(enable
);
2941 return ERROR_COMMAND_SYNTAX_ERROR
;
2946 COMMAND_HANDLER(handle_wait_halt_command
)
2949 return ERROR_COMMAND_SYNTAX_ERROR
;
2951 unsigned ms
= DEFAULT_HALT_TIMEOUT
;
2952 if (1 == CMD_ARGC
) {
2953 int retval
= parse_uint(CMD_ARGV
[0], &ms
);
2954 if (ERROR_OK
!= retval
)
2955 return ERROR_COMMAND_SYNTAX_ERROR
;
2958 struct target
*target
= get_current_target(CMD_CTX
);
2959 return target_wait_state(target
, TARGET_HALTED
, ms
);
2962 /* wait for target state to change. The trick here is to have a low
2963 * latency for short waits and not to suck up all the CPU time
2966 * After 500ms, keep_alive() is invoked
2968 int target_wait_state(struct target
*target
, enum target_state state
, int ms
)
2971 int64_t then
= 0, cur
;
2975 retval
= target_poll(target
);
2976 if (retval
!= ERROR_OK
)
2978 if (target
->state
== state
)
2983 then
= timeval_ms();
2984 LOG_DEBUG("waiting for target %s...",
2985 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2991 if ((cur
-then
) > ms
) {
2992 LOG_ERROR("timed out while waiting for target %s",
2993 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
3001 COMMAND_HANDLER(handle_halt_command
)
3005 struct target
*target
= get_current_target(CMD_CTX
);
3007 target
->verbose_halt_msg
= true;
3009 int retval
= target_halt(target
);
3010 if (ERROR_OK
!= retval
)
3013 if (CMD_ARGC
== 1) {
3014 unsigned wait_local
;
3015 retval
= parse_uint(CMD_ARGV
[0], &wait_local
);
3016 if (ERROR_OK
!= retval
)
3017 return ERROR_COMMAND_SYNTAX_ERROR
;
3022 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
3025 COMMAND_HANDLER(handle_soft_reset_halt_command
)
3027 struct target
*target
= get_current_target(CMD_CTX
);
3029 LOG_USER("requesting target halt and executing a soft reset");
3031 target_soft_reset_halt(target
);
3036 COMMAND_HANDLER(handle_reset_command
)
3039 return ERROR_COMMAND_SYNTAX_ERROR
;
3041 enum target_reset_mode reset_mode
= RESET_RUN
;
3042 if (CMD_ARGC
== 1) {
3044 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, CMD_ARGV
[0]);
3045 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
))
3046 return ERROR_COMMAND_SYNTAX_ERROR
;
3047 reset_mode
= n
->value
;
3050 /* reset *all* targets */
3051 return target_process_reset(CMD_CTX
, reset_mode
);
3055 COMMAND_HANDLER(handle_resume_command
)
3059 return ERROR_COMMAND_SYNTAX_ERROR
;
3061 struct target
*target
= get_current_target(CMD_CTX
);
3063 /* with no CMD_ARGV, resume from current pc, addr = 0,
3064 * with one arguments, addr = CMD_ARGV[0],
3065 * handle breakpoints, not debugging */
3066 target_addr_t addr
= 0;
3067 if (CMD_ARGC
== 1) {
3068 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], addr
);
3072 return target_resume(target
, current
, addr
, 1, 0);
3075 COMMAND_HANDLER(handle_step_command
)
3078 return ERROR_COMMAND_SYNTAX_ERROR
;
3082 /* with no CMD_ARGV, step from current pc, addr = 0,
3083 * with one argument addr = CMD_ARGV[0],
3084 * handle breakpoints, debugging */
3085 target_addr_t addr
= 0;
3087 if (CMD_ARGC
== 1) {
3088 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], addr
);
3092 struct target
*target
= get_current_target(CMD_CTX
);
3094 return target
->type
->step(target
, current_pc
, addr
, 1);
3097 static void handle_md_output(struct command_context
*cmd_ctx
,
3098 struct target
*target
, target_addr_t address
, unsigned size
,
3099 unsigned count
, const uint8_t *buffer
)
3101 const unsigned line_bytecnt
= 32;
3102 unsigned line_modulo
= line_bytecnt
/ size
;
3104 char output
[line_bytecnt
* 4 + 1];
3105 unsigned output_len
= 0;
3107 const char *value_fmt
;
3110 value_fmt
= "%16.16"PRIx64
" ";
3113 value_fmt
= "%8.8"PRIx64
" ";
3116 value_fmt
= "%4.4"PRIx64
" ";
3119 value_fmt
= "%2.2"PRIx64
" ";
3122 /* "can't happen", caller checked */
3123 LOG_ERROR("invalid memory read size: %u", size
);
3127 for (unsigned i
= 0; i
< count
; i
++) {
3128 if (i
% line_modulo
== 0) {
3129 output_len
+= snprintf(output
+ output_len
,
3130 sizeof(output
) - output_len
,
3131 TARGET_ADDR_FMT
": ",
3132 (address
+ (i
* size
)));
3136 const uint8_t *value_ptr
= buffer
+ i
* size
;
3139 value
= target_buffer_get_u64(target
, value_ptr
);
3142 value
= target_buffer_get_u32(target
, value_ptr
);
3145 value
= target_buffer_get_u16(target
, value_ptr
);
3150 output_len
+= snprintf(output
+ output_len
,
3151 sizeof(output
) - output_len
,
3154 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1)) {
3155 command_print(cmd_ctx
, "%s", output
);
3161 COMMAND_HANDLER(handle_md_command
)
3164 return ERROR_COMMAND_SYNTAX_ERROR
;
3167 switch (CMD_NAME
[2]) {
3181 return ERROR_COMMAND_SYNTAX_ERROR
;
3184 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
3185 int (*fn
)(struct target
*target
,
3186 target_addr_t address
, uint32_t size_value
, uint32_t count
, uint8_t *buffer
);
3190 fn
= target_read_phys_memory
;
3192 fn
= target_read_memory
;
3193 if ((CMD_ARGC
< 1) || (CMD_ARGC
> 2))
3194 return ERROR_COMMAND_SYNTAX_ERROR
;
3196 target_addr_t address
;
3197 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], address