Improve handle_verify_image_command_internal command argument handling:
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95 &arm7tdmi_target,
96 &arm9tdmi_target,
97 &arm920t_target,
98 &arm720t_target,
99 &arm966e_target,
100 &arm926ejs_target,
101 &feroceon_target,
102 &xscale_target,
103 &cortexm3_target,
104 &cortexa8_target,
105 &arm11_target,
106 &mips_m4k_target,
107 &avr_target,
108 NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116 { .name = "assert", NVP_ASSERT },
117 { .name = "deassert", NVP_DEASSERT },
118 { .name = "T", NVP_ASSERT },
119 { .name = "F", NVP_DEASSERT },
120 { .name = "t", NVP_ASSERT },
121 { .name = "f", NVP_DEASSERT },
122 { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
132 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
135 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137 { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142 const Jim_Nvp *n;
143
144 n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145 if( n->name == NULL ){
146 return "unknown";
147 } else {
148 return n->name;
149 }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
155
156 { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157 { .value = TARGET_EVENT_HALTED, .name = "halted" },
158 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165 /* historical name */
166
167 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
170 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
171 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
172 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
174 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
175 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
176 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
177 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
191
192 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
194
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
197 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
198
199 { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203 { .name = "unknown", .value = TARGET_UNKNOWN },
204 { .name = "running", .value = TARGET_RUNNING },
205 { .name = "halted", .value = TARGET_HALTED },
206 { .name = "reset", .value = TARGET_RESET },
207 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208 { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
213 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
214 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
215 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
217 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
218 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
219 { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223 { .name = "big", .value = TARGET_BIG_ENDIAN },
224 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225 { .name = "be", .value = TARGET_BIG_ENDIAN },
226 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
227 { .name = NULL, .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231 { .name = "unknown", .value = RESET_UNKNOWN },
232 { .name = "run" , .value = RESET_RUN },
233 { .name = "halt" , .value = RESET_HALT },
234 { .name = "init" , .value = RESET_INIT },
235 { .name = NULL , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240 target_t *t;
241 int x;
242
243 x = -1;
244 t = all_targets;
245 while( t ){
246 if( x < t->target_number ){
247 x = (t->target_number)+1;
248 }
249 t = t->next;
250 }
251 return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257 target_t *t;
258 int x;
259
260 /* number is 0 based */
261 x = -1;
262 t = all_targets;
263 while(t){
264 if( x < t->target_number ){
265 x = t->target_number;
266 }
267 t = t->next;
268 }
269 return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277 if (target->endianness == TARGET_LITTLE_ENDIAN)
278 return le_to_h_u32(buffer);
279 else
280 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286 if (target->endianness == TARGET_LITTLE_ENDIAN)
287 return le_to_h_u16(buffer);
288 else
289 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295 return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301 if (target->endianness == TARGET_LITTLE_ENDIAN)
302 h_u32_to_le(buffer, value);
303 else
304 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310 if (target->endianness == TARGET_LITTLE_ENDIAN)
311 h_u16_to_le(buffer, value);
312 else
313 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319 *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325 target_t *target;
326
327 /* try as tcltarget name */
328 for (target = all_targets; target; target = target->next) {
329 if (target->cmd_name == NULL)
330 continue;
331 if (strcmp(id, target->cmd_name) == 0)
332 return target;
333 }
334
335 /* no match, try as number */
336 unsigned num;
337 if (parse_uint(id, &num) != ERROR_OK)
338 return NULL;
339
340 for (target = all_targets; target; target = target->next) {
341 if (target->target_number == (int)num)
342 return target;
343 }
344
345 return NULL;
346 }
347
348 /* returns a pointer to the n-th configured target */
349 static target_t *get_target_by_num(int num)
350 {
351 target_t *target = all_targets;
352
353 while (target){
354 if( target->target_number == num ){
355 return target;
356 }
357 target = target->next;
358 }
359
360 return NULL;
361 }
362
363 int get_num_by_target(target_t *query_target)
364 {
365 return query_target->target_number;
366 }
367
368 target_t* get_current_target(command_context_t *cmd_ctx)
369 {
370 target_t *target = get_target_by_num(cmd_ctx->current_target);
371
372 if (target == NULL)
373 {
374 LOG_ERROR("BUG: current_target out of bounds");
375 exit(-1);
376 }
377
378 return target;
379 }
380
381 int target_poll(struct target_s *target)
382 {
383 /* We can't poll until after examine */
384 if (!target_was_examined(target))
385 {
386 /* Fail silently lest we pollute the log */
387 return ERROR_FAIL;
388 }
389 return target->type->poll(target);
390 }
391
392 int target_halt(struct target_s *target)
393 {
394 /* We can't poll until after examine */
395 if (!target_was_examined(target))
396 {
397 LOG_ERROR("Target not examined yet");
398 return ERROR_FAIL;
399 }
400 return target->type->halt(target);
401 }
402
403 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
404 {
405 int retval;
406
407 /* We can't poll until after examine */
408 if (!target_was_examined(target))
409 {
410 LOG_ERROR("Target not examined yet");
411 return ERROR_FAIL;
412 }
413
414 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
415 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
416 * the application.
417 */
418 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
419 return retval;
420
421 return retval;
422 }
423
424 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
425 {
426 char buf[100];
427 int retval;
428 Jim_Nvp *n;
429 n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
430 if( n->name == NULL ){
431 LOG_ERROR("invalid reset mode");
432 return ERROR_FAIL;
433 }
434
435 /* disable polling during reset to make reset event scripts
436 * more predictable, i.e. dr/irscan & pathmove in events will
437 * not have JTAG operations injected into the middle of a sequence.
438 */
439 int save_poll = target_continous_poll;
440 target_continous_poll = 0;
441
442 sprintf( buf, "ocd_process_reset %s", n->name );
443 retval = Jim_Eval( interp, buf );
444
445 target_continous_poll = save_poll;
446
447 if(retval != JIM_OK) {
448 Jim_PrintErrorMessage(interp);
449 return ERROR_FAIL;
450 }
451
452 /* We want any events to be processed before the prompt */
453 retval = target_call_timer_callbacks_now();
454
455 return retval;
456 }
457
458 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
459 {
460 *physical = virtual;
461 return ERROR_OK;
462 }
463
464 static int default_mmu(struct target_s *target, int *enabled)
465 {
466 *enabled = 0;
467 return ERROR_OK;
468 }
469
470 static int default_examine(struct target_s *target)
471 {
472 target_set_examined(target);
473 return ERROR_OK;
474 }
475
476 int target_examine_one(struct target_s *target)
477 {
478 return target->type->examine(target);
479 }
480
481 /* Targets that correctly implement init+examine, i.e.
482 * no communication with target during init:
483 *
484 * XScale
485 */
486 int target_examine(void)
487 {
488 int retval = ERROR_OK;
489 target_t *target;
490
491 for (target = all_targets; target; target = target->next)
492 {
493 if (!target->tap->enabled)
494 continue;
495 if ((retval = target_examine_one(target)) != ERROR_OK)
496 return retval;
497 }
498 return retval;
499 }
500 const char *target_get_name(struct target_s *target)
501 {
502 return target->type->name;
503 }
504
505 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
506 {
507 if (!target_was_examined(target))
508 {
509 LOG_ERROR("Target not examined yet");
510 return ERROR_FAIL;
511 }
512 return target->type->write_memory_imp(target, address, size, count, buffer);
513 }
514
515 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
516 {
517 if (!target_was_examined(target))
518 {
519 LOG_ERROR("Target not examined yet");
520 return ERROR_FAIL;
521 }
522 return target->type->read_memory_imp(target, address, size, count, buffer);
523 }
524
525 static int target_soft_reset_halt_imp(struct target_s *target)
526 {
527 if (!target_was_examined(target))
528 {
529 LOG_ERROR("Target not examined yet");
530 return ERROR_FAIL;
531 }
532 return target->type->soft_reset_halt_imp(target);
533 }
534
535 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
536 {
537 if (!target_was_examined(target))
538 {
539 LOG_ERROR("Target not examined yet");
540 return ERROR_FAIL;
541 }
542 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 }
544
545 int target_read_memory(struct target_s *target,
546 u32 address, u32 size, u32 count, u8 *buffer)
547 {
548 return target->type->read_memory(target, address, size, count, buffer);
549 }
550
551 int target_write_memory(struct target_s *target,
552 u32 address, u32 size, u32 count, u8 *buffer)
553 {
554 return target->type->write_memory(target, address, size, count, buffer);
555 }
556 int target_bulk_write_memory(struct target_s *target,
557 u32 address, u32 count, u8 *buffer)
558 {
559 return target->type->bulk_write_memory(target, address, count, buffer);
560 }
561
562 int target_add_breakpoint(struct target_s *target,
563 struct breakpoint_s *breakpoint)
564 {
565 return target->type->add_breakpoint(target, breakpoint);
566 }
567 int target_remove_breakpoint(struct target_s *target,
568 struct breakpoint_s *breakpoint)
569 {
570 return target->type->remove_breakpoint(target, breakpoint);
571 }
572
573 int target_add_watchpoint(struct target_s *target,
574 struct watchpoint_s *watchpoint)
575 {
576 return target->type->add_watchpoint(target, watchpoint);
577 }
578 int target_remove_watchpoint(struct target_s *target,
579 struct watchpoint_s *watchpoint)
580 {
581 return target->type->remove_watchpoint(target, watchpoint);
582 }
583
584 int target_get_gdb_reg_list(struct target_s *target,
585 struct reg_s **reg_list[], int *reg_list_size)
586 {
587 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
588 }
589 int target_step(struct target_s *target,
590 int current, u32 address, int handle_breakpoints)
591 {
592 return target->type->step(target, current, address, handle_breakpoints);
593 }
594
595
596 int target_run_algorithm(struct target_s *target,
597 int num_mem_params, mem_param_t *mem_params,
598 int num_reg_params, reg_param_t *reg_param,
599 u32 entry_point, u32 exit_point,
600 int timeout_ms, void *arch_info)
601 {
602 return target->type->run_algorithm(target,
603 num_mem_params, mem_params, num_reg_params, reg_param,
604 entry_point, exit_point, timeout_ms, arch_info);
605 }
606
607 /// @returns @c true if the target has been examined.
608 bool target_was_examined(struct target_s *target)
609 {
610 return target->type->examined;
611 }
612 /// Sets the @c examined flag for the given target.
613 void target_set_examined(struct target_s *target)
614 {
615 target->type->examined = true;
616 }
617 // Reset the @c examined flag for the given target.
618 void target_reset_examined(struct target_s *target)
619 {
620 target->type->examined = false;
621 }
622
623
624 int target_init(struct command_context_s *cmd_ctx)
625 {
626 target_t *target = all_targets;
627 int retval;
628
629 while (target)
630 {
631 target_reset_examined(target);
632 if (target->type->examine == NULL)
633 {
634 target->type->examine = default_examine;
635 }
636
637 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
638 {
639 LOG_ERROR("target '%s' init failed", target_get_name(target));
640 return retval;
641 }
642
643 /* Set up default functions if none are provided by target */
644 if (target->type->virt2phys == NULL)
645 {
646 target->type->virt2phys = default_virt2phys;
647 }
648 target->type->virt2phys = default_virt2phys;
649 /* a non-invasive way(in terms of patches) to add some code that
650 * runs before the type->write/read_memory implementation
651 */
652 target->type->write_memory_imp = target->type->write_memory;
653 target->type->write_memory = target_write_memory_imp;
654 target->type->read_memory_imp = target->type->read_memory;
655 target->type->read_memory = target_read_memory_imp;
656 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
657 target->type->soft_reset_halt = target_soft_reset_halt_imp;
658 target->type->run_algorithm_imp = target->type->run_algorithm;
659 target->type->run_algorithm = target_run_algorithm_imp;
660
661 if (target->type->mmu == NULL)
662 {
663 target->type->mmu = default_mmu;
664 }
665 target = target->next;
666 }
667
668 if (all_targets)
669 {
670 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
671 return retval;
672 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
673 return retval;
674 }
675
676 return ERROR_OK;
677 }
678
679 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
680 {
681 target_event_callback_t **callbacks_p = &target_event_callbacks;
682
683 if (callback == NULL)
684 {
685 return ERROR_INVALID_ARGUMENTS;
686 }
687
688 if (*callbacks_p)
689 {
690 while ((*callbacks_p)->next)
691 callbacks_p = &((*callbacks_p)->next);
692 callbacks_p = &((*callbacks_p)->next);
693 }
694
695 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
696 (*callbacks_p)->callback = callback;
697 (*callbacks_p)->priv = priv;
698 (*callbacks_p)->next = NULL;
699
700 return ERROR_OK;
701 }
702
703 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
704 {
705 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
706 struct timeval now;
707
708 if (callback == NULL)
709 {
710 return ERROR_INVALID_ARGUMENTS;
711 }
712
713 if (*callbacks_p)
714 {
715 while ((*callbacks_p)->next)
716 callbacks_p = &((*callbacks_p)->next);
717 callbacks_p = &((*callbacks_p)->next);
718 }
719
720 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
721 (*callbacks_p)->callback = callback;
722 (*callbacks_p)->periodic = periodic;
723 (*callbacks_p)->time_ms = time_ms;
724
725 gettimeofday(&now, NULL);
726 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
727 time_ms -= (time_ms % 1000);
728 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
729 if ((*callbacks_p)->when.tv_usec > 1000000)
730 {
731 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
732 (*callbacks_p)->when.tv_sec += 1;
733 }
734
735 (*callbacks_p)->priv = priv;
736 (*callbacks_p)->next = NULL;
737
738 return ERROR_OK;
739 }
740
741 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
742 {
743 target_event_callback_t **p = &target_event_callbacks;
744 target_event_callback_t *c = target_event_callbacks;
745
746 if (callback == NULL)
747 {
748 return ERROR_INVALID_ARGUMENTS;
749 }
750
751 while (c)
752 {
753 target_event_callback_t *next = c->next;
754 if ((c->callback == callback) && (c->priv == priv))
755 {
756 *p = next;
757 free(c);
758 return ERROR_OK;
759 }
760 else
761 p = &(c->next);
762 c = next;
763 }
764
765 return ERROR_OK;
766 }
767
768 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
769 {
770 target_timer_callback_t **p = &target_timer_callbacks;
771 target_timer_callback_t *c = target_timer_callbacks;
772
773 if (callback == NULL)
774 {
775 return ERROR_INVALID_ARGUMENTS;
776 }
777
778 while (c)
779 {
780 target_timer_callback_t *next = c->next;
781 if ((c->callback == callback) && (c->priv == priv))
782 {
783 *p = next;
784 free(c);
785 return ERROR_OK;
786 }
787 else
788 p = &(c->next);
789 c = next;
790 }
791
792 return ERROR_OK;
793 }
794
795 int target_call_event_callbacks(target_t *target, enum target_event event)
796 {
797 target_event_callback_t *callback = target_event_callbacks;
798 target_event_callback_t *next_callback;
799
800 if (event == TARGET_EVENT_HALTED)
801 {
802 /* execute early halted first */
803 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
804 }
805
806 LOG_DEBUG("target event %i (%s)",
807 event,
808 Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
809
810 target_handle_event( target, event );
811
812 while (callback)
813 {
814 next_callback = callback->next;
815 callback->callback(target, event, callback->priv);
816 callback = next_callback;
817 }
818
819 return ERROR_OK;
820 }
821
822 static int target_timer_callback_periodic_restart(
823 target_timer_callback_t *cb, struct timeval *now)
824 {
825 int time_ms = cb->time_ms;
826 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
827 time_ms -= (time_ms % 1000);
828 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
829 if (cb->when.tv_usec > 1000000)
830 {
831 cb->when.tv_usec = cb->when.tv_usec - 1000000;
832 cb->when.tv_sec += 1;
833 }
834 return ERROR_OK;
835 }
836
837 static int target_call_timer_callback(target_timer_callback_t *cb,
838 struct timeval *now)
839 {
840 cb->callback(cb->priv);
841
842 if (cb->periodic)
843 return target_timer_callback_periodic_restart(cb, now);
844
845 return target_unregister_timer_callback(cb->callback, cb->priv);
846 }
847
848 static int target_call_timer_callbacks_check_time(int checktime)
849 {
850 keep_alive();
851
852 struct timeval now;
853 gettimeofday(&now, NULL);
854
855 target_timer_callback_t *callback = target_timer_callbacks;
856 while (callback)
857 {
858 // cleaning up may unregister and free this callback
859 target_timer_callback_t *next_callback = callback->next;
860
861 bool call_it = callback->callback &&
862 ((!checktime && callback->periodic) ||
863 now.tv_sec > callback->when.tv_sec ||
864 (now.tv_sec == callback->when.tv_sec &&
865 now.tv_usec >= callback->when.tv_usec));
866
867 if (call_it)
868 {
869 int retval = target_call_timer_callback(callback, &now);
870 if (retval != ERROR_OK)
871 return retval;
872 }
873
874 callback = next_callback;
875 }
876
877 return ERROR_OK;
878 }
879
880 int target_call_timer_callbacks(void)
881 {
882 return target_call_timer_callbacks_check_time(1);
883 }
884
885 /* invoke periodic callbacks immediately */
886 int target_call_timer_callbacks_now(void)
887 {
888 return target_call_timer_callbacks_check_time(0);
889 }
890
891 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
892 {
893 working_area_t *c = target->working_areas;
894 working_area_t *new_wa = NULL;
895
896 /* Reevaluate working area address based on MMU state*/
897 if (target->working_areas == NULL)
898 {
899 int retval;
900 int enabled;
901 retval = target->type->mmu(target, &enabled);
902 if (retval != ERROR_OK)
903 {
904 return retval;
905 }
906 if (enabled)
907 {
908 target->working_area = target->working_area_virt;
909 }
910 else
911 {
912 target->working_area = target->working_area_phys;
913 }
914 }
915
916 /* only allocate multiples of 4 byte */
917 if (size % 4)
918 {
919 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
920 size = CEIL(size, 4);
921 }
922
923 /* see if there's already a matching working area */
924 while (c)
925 {
926 if ((c->free) && (c->size == size))
927 {
928 new_wa = c;
929 break;
930 }
931 c = c->next;
932 }
933
934 /* if not, allocate a new one */
935 if (!new_wa)
936 {
937 working_area_t **p = &target->working_areas;
938 u32 first_free = target->working_area;
939 u32 free_size = target->working_area_size;
940
941 LOG_DEBUG("allocating new working area");
942
943 c = target->working_areas;
944 while (c)
945 {
946 first_free += c->size;
947 free_size -= c->size;
948 p = &c->next;
949 c = c->next;
950 }
951
952 if (free_size < size)
953 {
954 LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
955 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
956 }
957
958 new_wa = malloc(sizeof(working_area_t));
959 new_wa->next = NULL;
960 new_wa->size = size;
961 new_wa->address = first_free;
962
963 if (target->backup_working_area)
964 {
965 int retval;
966 new_wa->backup = malloc(new_wa->size);
967 if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
968 {
969 free(new_wa->backup);
970 free(new_wa);
971 return retval;
972 }
973 }
974 else
975 {
976 new_wa->backup = NULL;
977 }
978
979 /* put new entry in list */
980 *p = new_wa;
981 }
982
983 /* mark as used, and return the new (reused) area */
984 new_wa->free = 0;
985 *area = new_wa;
986
987 /* user pointer */
988 new_wa->user = area;
989
990 return ERROR_OK;
991 }
992
993 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
994 {
995 if (area->free)
996 return ERROR_OK;
997
998 if (restore&&target->backup_working_area)
999 {
1000 int retval;
1001 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1002 return retval;
1003 }
1004
1005 area->free = 1;
1006
1007 /* mark user pointer invalid */
1008 *area->user = NULL;
1009 area->user = NULL;
1010
1011 return ERROR_OK;
1012 }
1013
1014 int target_free_working_area(struct target_s *target, working_area_t *area)
1015 {
1016 return target_free_working_area_restore(target, area, 1);
1017 }
1018
1019 /* free resources and restore memory, if restoring memory fails,
1020 * free up resources anyway
1021 */
1022 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1023 {
1024 working_area_t *c = target->working_areas;
1025
1026 while (c)
1027 {
1028 working_area_t *next = c->next;
1029 target_free_working_area_restore(target, c, restore);
1030
1031 if (c->backup)
1032 free(c->backup);
1033
1034 free(c);
1035
1036 c = next;
1037 }
1038
1039 target->working_areas = NULL;
1040 }
1041
1042 void target_free_all_working_areas(struct target_s *target)
1043 {
1044 target_free_all_working_areas_restore(target, 1);
1045 }
1046
1047 int target_register_commands(struct command_context_s *cmd_ctx)
1048 {
1049
1050 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1051
1052
1053
1054
1055 register_jim(cmd_ctx, "target", jim_target, "configure target" );
1056
1057 return ERROR_OK;
1058 }
1059
1060 int target_arch_state(struct target_s *target)
1061 {
1062 int retval;
1063 if (target==NULL)
1064 {
1065 LOG_USER("No target has been configured");
1066 return ERROR_OK;
1067 }
1068
1069 LOG_USER("target state: %s",
1070 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1071
1072 if (target->state!=TARGET_HALTED)
1073 return ERROR_OK;
1074
1075 retval=target->type->arch_state(target);
1076 return retval;
1077 }
1078
1079 /* Single aligned words are guaranteed to use 16 or 32 bit access
1080 * mode respectively, otherwise data is handled as quickly as
1081 * possible
1082 */
1083 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1084 {
1085 int retval;
1086 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1087
1088 if (!target_was_examined(target))
1089 {
1090 LOG_ERROR("Target not examined yet");
1091 return ERROR_FAIL;
1092 }
1093
1094 if (size == 0) {
1095 return ERROR_OK;
1096 }
1097
1098 if ((address + size - 1) < address)
1099 {
1100 /* GDB can request this when e.g. PC is 0xfffffffc*/
1101 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1102 return ERROR_FAIL;
1103 }
1104
1105 if (((address % 2) == 0) && (size == 2))
1106 {
1107 return target_write_memory(target, address, 2, 1, buffer);
1108 }
1109
1110 /* handle unaligned head bytes */
1111 if (address % 4)
1112 {
1113 u32 unaligned = 4 - (address % 4);
1114
1115 if (unaligned > size)
1116 unaligned = size;
1117
1118 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1119 return retval;
1120
1121 buffer += unaligned;
1122 address += unaligned;
1123 size -= unaligned;
1124 }
1125
1126 /* handle aligned words */
1127 if (size >= 4)
1128 {
1129 int aligned = size - (size % 4);
1130
1131 /* use bulk writes above a certain limit. This may have to be changed */
1132 if (aligned > 128)
1133 {
1134 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1135 return retval;
1136 }
1137 else
1138 {
1139 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1140 return retval;
1141 }
1142
1143 buffer += aligned;
1144 address += aligned;
1145 size -= aligned;
1146 }
1147
1148 /* handle tail writes of less than 4 bytes */
1149 if (size > 0)
1150 {
1151 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1152 return retval;
1153 }
1154
1155 return ERROR_OK;
1156 }
1157
1158 /* Single aligned words are guaranteed to use 16 or 32 bit access
1159 * mode respectively, otherwise data is handled as quickly as
1160 * possible
1161 */
1162 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1163 {
1164 int retval;
1165 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1166
1167 if (!target_was_examined(target))
1168 {
1169 LOG_ERROR("Target not examined yet");
1170 return ERROR_FAIL;
1171 }
1172
1173 if (size == 0) {
1174 return ERROR_OK;
1175 }
1176
1177 if ((address + size - 1) < address)
1178 {
1179 /* GDB can request this when e.g. PC is 0xfffffffc*/
1180 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1181 return ERROR_FAIL;
1182 }
1183
1184 if (((address % 2) == 0) && (size == 2))
1185 {
1186 return target_read_memory(target, address, 2, 1, buffer);
1187 }
1188
1189 /* handle unaligned head bytes */
1190 if (address % 4)
1191 {
1192 u32 unaligned = 4 - (address % 4);
1193
1194 if (unaligned > size)
1195 unaligned = size;
1196
1197 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1198 return retval;
1199
1200 buffer += unaligned;
1201 address += unaligned;
1202 size -= unaligned;
1203 }
1204
1205 /* handle aligned words */
1206 if (size >= 4)
1207 {
1208 int aligned = size - (size % 4);
1209
1210 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1211 return retval;
1212
1213 buffer += aligned;
1214 address += aligned;
1215 size -= aligned;
1216 }
1217
1218 /* handle tail writes of less than 4 bytes */
1219 if (size > 0)
1220 {
1221 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1222 return retval;
1223 }
1224
1225 return ERROR_OK;
1226 }
1227
1228 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1229 {
1230 u8 *buffer;
1231 int retval;
1232 u32 i;
1233 u32 checksum = 0;
1234 if (!target_was_examined(target))
1235 {
1236 LOG_ERROR("Target not examined yet");
1237 return ERROR_FAIL;
1238 }
1239
1240 if ((retval = target->type->checksum_memory(target, address,
1241 size, &checksum)) != ERROR_OK)
1242 {
1243 buffer = malloc(size);
1244 if (buffer == NULL)
1245 {
1246 LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1247 return ERROR_INVALID_ARGUMENTS;
1248 }
1249 retval = target_read_buffer(target, address, size, buffer);
1250 if (retval != ERROR_OK)
1251 {
1252 free(buffer);
1253 return retval;
1254 }
1255
1256 /* convert to target endianess */
1257 for (i = 0; i < (size/sizeof(u32)); i++)
1258 {
1259 u32 target_data;
1260 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1261 target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1262 }
1263
1264 retval = image_calculate_checksum( buffer, size, &checksum );
1265 free(buffer);
1266 }
1267
1268 *crc = checksum;
1269
1270 return retval;
1271 }
1272
1273 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1274 {
1275 int retval;
1276 if (!target_was_examined(target))
1277 {
1278 LOG_ERROR("Target not examined yet");
1279 return ERROR_FAIL;
1280 }
1281
1282 if (target->type->blank_check_memory == 0)
1283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284
1285 retval = target->type->blank_check_memory(target, address, size, blank);
1286
1287 return retval;
1288 }
1289
1290 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1291 {
1292 u8 value_buf[4];
1293 if (!target_was_examined(target))
1294 {
1295 LOG_ERROR("Target not examined yet");
1296 return ERROR_FAIL;
1297 }
1298
1299 int retval = target_read_memory(target, address, 4, 1, value_buf);
1300
1301 if (retval == ERROR_OK)
1302 {
1303 *value = target_buffer_get_u32(target, value_buf);
1304 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1305 }
1306 else
1307 {
1308 *value = 0x0;
1309 LOG_DEBUG("address: 0x%8.8x failed", address);
1310 }
1311
1312 return retval;
1313 }
1314
1315 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1316 {
1317 u8 value_buf[2];
1318 if (!target_was_examined(target))
1319 {
1320 LOG_ERROR("Target not examined yet");
1321 return ERROR_FAIL;
1322 }
1323
1324 int retval = target_read_memory(target, address, 2, 1, value_buf);
1325
1326 if (retval == ERROR_OK)
1327 {
1328 *value = target_buffer_get_u16(target, value_buf);
1329 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1330 }
1331 else
1332 {
1333 *value = 0x0;
1334 LOG_DEBUG("address: 0x%8.8x failed", address);
1335 }
1336
1337 return retval;
1338 }
1339
1340 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1341 {
1342 int retval = target_read_memory(target, address, 1, 1, value);
1343 if (!target_was_examined(target))
1344 {
1345 LOG_ERROR("Target not examined yet");
1346 return ERROR_FAIL;
1347 }
1348
1349 if (retval == ERROR_OK)
1350 {
1351 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1352 }
1353 else
1354 {
1355 *value = 0x0;
1356 LOG_DEBUG("address: 0x%8.8x failed", address);
1357 }
1358
1359 return retval;
1360 }
1361
1362 int target_write_u32(struct target_s *target, u32 address, u32 value)
1363 {
1364 int retval;
1365 u8 value_buf[4];
1366 if (!target_was_examined(target))
1367 {
1368 LOG_ERROR("Target not examined yet");
1369 return ERROR_FAIL;
1370 }
1371
1372 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1373
1374 target_buffer_set_u32(target, value_buf, value);
1375 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1376 {
1377 LOG_DEBUG("failed: %i", retval);
1378 }
1379
1380 return retval;
1381 }
1382
1383 int target_write_u16(struct target_s *target, u32 address, u16 value)
1384 {
1385 int retval;
1386 u8 value_buf[2];
1387 if (!target_was_examined(target))
1388 {
1389 LOG_ERROR("Target not examined yet");
1390 return ERROR_FAIL;
1391 }
1392
1393 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1394
1395 target_buffer_set_u16(target, value_buf, value);
1396 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1397 {
1398 LOG_DEBUG("failed: %i", retval);
1399 }
1400
1401 return retval;
1402 }
1403
1404 int target_write_u8(struct target_s *target, u32 address, u8 value)
1405 {
1406 int retval;
1407 if (!target_was_examined(target))
1408 {
1409 LOG_ERROR("Target not examined yet");
1410 return ERROR_FAIL;
1411 }
1412
1413 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1414
1415 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1416 {
1417 LOG_DEBUG("failed: %i", retval);
1418 }
1419
1420 return retval;
1421 }
1422
1423 int target_register_user_commands(struct command_context_s *cmd_ctx)
1424 {
1425 int retval = ERROR_OK;
1426
1427
1428 /* script procedures */
1429 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1430 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1431 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1432
1433 register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1434 "same args as load_image, image stored in memory - mainly for profiling purposes");
1435
1436 register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1437 "loads active fast load image to current target - mainly for profiling purposes");
1438
1439
1440 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1441 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1442 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1443 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1444 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1445 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1446 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1447 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1448 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1449
1450 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1451 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1452 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1453
1454 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1455 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1456 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1457
1458 register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1459 register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1460 register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1461 register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1462
1463 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1464 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1465 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1466 register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1467
1468 if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1469 return retval;
1470 if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1471 return retval;
1472
1473 return retval;
1474 }
1475
1476 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 {
1478 target_t *target = all_targets;
1479
1480 if (argc == 1)
1481 {
1482 target = get_target(args[0]);
1483 if (target == NULL) {
1484 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1485 goto DumpTargets;
1486 }
1487 if (!target->tap->enabled) {
1488 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1489 "can't be the current target\n",
1490 target->tap->dotted_name);
1491 return ERROR_FAIL;
1492 }
1493
1494 cmd_ctx->current_target = target->target_number;
1495 return ERROR_OK;
1496 }
1497 DumpTargets:
1498
1499 target = all_targets;
1500 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1501 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1502 while (target)
1503 {
1504 const char *state;
1505 char marker = ' ';
1506
1507 if (target->tap->enabled)
1508 state = Jim_Nvp_value2name_simple(nvp_target_state,
1509 target->state)->name;
1510 else
1511 state = "tap-disabled";
1512
1513 if (cmd_ctx->current_target == target->target_number)
1514 marker = '*';
1515
1516 /* keep columns lined up to match the headers above */
1517 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1518 target->target_number,
1519 marker,
1520 target->cmd_name,
1521 target_get_name(target),
1522 Jim_Nvp_value2name_simple(nvp_target_endian,
1523 target->endianness)->name,
1524 target->tap->dotted_name,
1525 state);
1526 target = target->next;
1527 }
1528
1529 return ERROR_OK;
1530 }
1531
1532 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1533
1534 static int powerDropout;
1535 static int srstAsserted;
1536
1537 static int runPowerRestore;
1538 static int runPowerDropout;
1539 static int runSrstAsserted;
1540 static int runSrstDeasserted;
1541
1542 static int sense_handler(void)
1543 {
1544 static int prevSrstAsserted = 0;
1545 static int prevPowerdropout = 0;
1546
1547 int retval;
1548 if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1549 return retval;
1550
1551 int powerRestored;
1552 powerRestored = prevPowerdropout && !powerDropout;
1553 if (powerRestored)
1554 {
1555 runPowerRestore = 1;
1556 }
1557
1558 long long current = timeval_ms();
1559 static long long lastPower = 0;
1560 int waitMore = lastPower + 2000 > current;
1561 if (powerDropout && !waitMore)
1562 {
1563 runPowerDropout = 1;
1564 lastPower = current;
1565 }
1566
1567 if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1568 return retval;
1569
1570 int srstDeasserted;
1571 srstDeasserted = prevSrstAsserted && !srstAsserted;
1572
1573 static long long lastSrst = 0;
1574 waitMore = lastSrst + 2000 > current;
1575 if (srstDeasserted && !waitMore)
1576 {
1577 runSrstDeasserted = 1;
1578 lastSrst = current;
1579 }
1580
1581 if (!prevSrstAsserted && srstAsserted)
1582 {
1583 runSrstAsserted = 1;
1584 }
1585
1586 prevSrstAsserted = srstAsserted;
1587 prevPowerdropout = powerDropout;
1588
1589 if (srstDeasserted || powerRestored)
1590 {
1591 /* Other than logging the event we can't do anything here.
1592 * Issuing a reset is a particularly bad idea as we might
1593 * be inside a reset already.
1594 */
1595 }
1596
1597 return ERROR_OK;
1598 }
1599
1600 /* process target state changes */
1601 int handle_target(void *priv)
1602 {
1603 int retval = ERROR_OK;
1604
1605 /* we do not want to recurse here... */
1606 static int recursive = 0;
1607 if (! recursive)
1608 {
1609 recursive = 1;
1610 sense_handler();
1611 /* danger! running these procedures can trigger srst assertions and power dropouts.
1612 * We need to avoid an infinite loop/recursion here and we do that by
1613 * clearing the flags after running these events.
1614 */
1615 int did_something = 0;
1616 if (runSrstAsserted)
1617 {
1618 Jim_Eval( interp, "srst_asserted");
1619 did_something = 1;
1620 }
1621 if (runSrstDeasserted)
1622 {
1623 Jim_Eval( interp, "srst_deasserted");
1624 did_something = 1;
1625 }
1626 if (runPowerDropout)
1627 {
1628 Jim_Eval( interp, "power_dropout");
1629 did_something = 1;
1630 }
1631 if (runPowerRestore)
1632 {
1633 Jim_Eval( interp, "power_restore");
1634 did_something = 1;
1635 }
1636
1637 if (did_something)
1638 {
1639 /* clear detect flags */
1640 sense_handler();
1641 }
1642
1643 /* clear action flags */
1644
1645 runSrstAsserted=0;
1646 runSrstDeasserted=0;
1647 runPowerRestore=0;
1648 runPowerDropout=0;
1649
1650 recursive = 0;
1651 }
1652
1653 target_t *target = all_targets;
1654
1655 while (target)
1656 {
1657
1658 /* only poll target if we've got power and srst isn't asserted */
1659 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1660 {
1661 /* polling may fail silently until the target has been examined */
1662 if((retval = target_poll(target)) != ERROR_OK)
1663 return retval;
1664 }
1665
1666 target = target->next;
1667 }
1668
1669 return retval;
1670 }
1671
1672 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1673 {
1674 target_t *target;
1675 reg_t *reg = NULL;
1676 int count = 0;
1677 char *value;
1678
1679 LOG_DEBUG("-");
1680
1681 target = get_current_target(cmd_ctx);
1682
1683 /* list all available registers for the current target */
1684 if (argc == 0)
1685 {
1686 reg_cache_t *cache = target->reg_cache;
1687
1688 count = 0;
1689 while(cache)
1690 {
1691 int i;
1692 for (i = 0; i < cache->num_regs; i++)
1693 {
1694 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1695 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1696 free(value);
1697 }
1698 cache = cache->next;
1699 }
1700
1701 return ERROR_OK;
1702 }
1703
1704 /* access a single register by its ordinal number */
1705 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1706 {
1707 unsigned num;
1708 int retval = parse_uint(args[0], &num);
1709 if (ERROR_OK != retval)
1710 return ERROR_COMMAND_SYNTAX_ERROR;
1711
1712 reg_cache_t *cache = target->reg_cache;
1713 count = 0;
1714 while(cache)
1715 {
1716 int i;
1717 for (i = 0; i < cache->num_regs; i++)
1718 {
1719 if (count++ == (int)num)
1720 {
1721 reg = &cache->reg_list[i];
1722 break;
1723 }
1724 }
1725 if (reg)
1726 break;
1727 cache = cache->next;
1728 }
1729
1730 if (!reg)
1731 {
1732 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1733 return ERROR_OK;
1734 }
1735 } else /* access a single register by its name */
1736 {
1737 reg = register_get_by_name(target->reg_cache, args[0], 1);
1738
1739 if (!reg)
1740 {
1741 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1742 return ERROR_OK;
1743 }
1744 }
1745
1746 /* display a register */
1747 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1748 {
1749 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1750 reg->valid = 0;
1751
1752 if (reg->valid == 0)
1753 {
1754 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1755 arch_type->get(reg);
1756 }
1757 value = buf_to_str(reg->value, reg->size, 16);
1758 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1759 free(value);
1760 return ERROR_OK;
1761 }
1762
1763 /* set register value */
1764 if (argc == 2)
1765 {
1766 u8 *buf = malloc(CEIL(reg->size, 8));
1767 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1768
1769 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1770 arch_type->set(reg, buf);
1771
1772 value = buf_to_str(reg->value, reg->size, 16);
1773 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1774 free(value);
1775
1776 free(buf);
1777
1778 return ERROR_OK;
1779 }
1780
1781 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1782
1783 return ERROR_OK;
1784 }
1785
1786 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1787 {
1788 int retval = ERROR_OK;
1789 target_t *target = get_current_target(cmd_ctx);
1790
1791 if (argc == 0)
1792 {
1793 command_print(cmd_ctx, "background polling: %s",
1794 target_continous_poll ? "on" : "off");
1795 if ((retval = target_poll(target)) != ERROR_OK)
1796 return retval;
1797 if ((retval = target_arch_state(target)) != ERROR_OK)
1798 return retval;
1799
1800 }
1801 else if (argc==1)
1802 {
1803 if (strcmp(args[0], "on") == 0)
1804 {
1805 target_continous_poll = 1;
1806 }
1807 else if (strcmp(args[0], "off") == 0)
1808 {
1809 target_continous_poll = 0;
1810 }
1811 else
1812 {
1813 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1814 }
1815 } else
1816 {
1817 return ERROR_COMMAND_SYNTAX_ERROR;
1818 }
1819
1820 return retval;
1821 }
1822
1823 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1824 {
1825 if (argc > 1)
1826 return ERROR_COMMAND_SYNTAX_ERROR;
1827
1828 unsigned ms = 5000;
1829 if (1 == argc)
1830 {
1831 int retval = parse_uint(args[0], &ms);
1832 if (ERROR_OK != retval)
1833 {
1834 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1835 return ERROR_COMMAND_SYNTAX_ERROR;
1836 }
1837 // convert seconds (given) to milliseconds (needed)
1838 ms *= 1000;
1839 }
1840
1841 target_t *target = get_current_target(cmd_ctx);
1842 return target_wait_state(target, TARGET_HALTED, ms);
1843 }
1844
1845 /* wait for target state to change. The trick here is to have a low
1846 * latency for short waits and not to suck up all the CPU time
1847 * on longer waits.
1848 *
1849 * After 500ms, keep_alive() is invoked
1850 */
1851 int target_wait_state(target_t *target, enum target_state state, int ms)
1852 {
1853 int retval;
1854 long long then=0, cur;
1855 int once=1;
1856
1857 for (;;)
1858 {
1859 if ((retval=target_poll(target))!=ERROR_OK)
1860 return retval;
1861 if (target->state == state)
1862 {
1863 break;
1864 }
1865 cur = timeval_ms();
1866 if (once)
1867 {
1868 once=0;
1869 then = timeval_ms();
1870 LOG_DEBUG("waiting for target %s...",
1871 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1872 }
1873
1874 if (cur-then>500)
1875 {
1876 keep_alive();
1877 }
1878
1879 if ((cur-then)>ms)
1880 {
1881 LOG_ERROR("timed out while waiting for target %s",
1882 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1883 return ERROR_FAIL;
1884 }
1885 }
1886
1887 return ERROR_OK;
1888 }
1889
1890 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1891 {
1892 LOG_DEBUG("-");
1893
1894 target_t *target = get_current_target(cmd_ctx);
1895 int retval = target_halt(target);
1896 if (ERROR_OK != retval)
1897 return retval;
1898
1899 if (argc == 1)
1900 {
1901 unsigned wait;
1902 retval = parse_uint(args[0], &wait);
1903 if (ERROR_OK != retval)
1904 return ERROR_COMMAND_SYNTAX_ERROR;
1905 if (!wait)
1906 return ERROR_OK;
1907 }
1908
1909 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1910 }
1911
1912 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1913 {
1914 target_t *target = get_current_target(cmd_ctx);
1915
1916 LOG_USER("requesting target halt and executing a soft reset");
1917
1918 target->type->soft_reset_halt(target);
1919
1920 return ERROR_OK;
1921 }
1922
1923 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1924 {
1925 if (argc > 1)
1926 return ERROR_COMMAND_SYNTAX_ERROR;
1927
1928 enum target_reset_mode reset_mode = RESET_RUN;
1929 if (argc == 1)
1930 {
1931 const Jim_Nvp *n;
1932 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1933 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1934 return ERROR_COMMAND_SYNTAX_ERROR;
1935 }
1936 reset_mode = n->value;
1937 }
1938
1939 /* reset *all* targets */
1940 return target_process_reset(cmd_ctx, reset_mode);
1941 }
1942
1943
1944 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1945 {
1946 if (argc > 1)
1947 return ERROR_COMMAND_SYNTAX_ERROR;
1948
1949 target_t *target = get_current_target(cmd_ctx);
1950 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1951
1952 /* with no args, resume from current pc, addr = 0,
1953 * with one arguments, addr = args[0],
1954 * handle breakpoints, not debugging */
1955 u32 addr = 0;
1956 if (argc == 1)
1957 {
1958 int retval = parse_u32(args[0], &addr);
1959 if (ERROR_OK != retval)
1960 return retval;
1961 }
1962
1963 return target_resume(target, 0, addr, 1, 0);
1964 }
1965
1966 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1967 {
1968 if (argc > 1)
1969 return ERROR_COMMAND_SYNTAX_ERROR;
1970
1971 LOG_DEBUG("-");
1972
1973 /* with no args, step from current pc, addr = 0,
1974 * with one argument addr = args[0],
1975 * handle breakpoints, debugging */
1976 u32 addr = 0;
1977 if (argc == 1)
1978 {
1979 int retval = parse_u32(args[0], &addr);
1980 if (ERROR_OK != retval)
1981 return retval;
1982 }
1983
1984 target_t *target = get_current_target(cmd_ctx);
1985 return target->type->step(target, 0, addr, 1);
1986 }
1987
1988 static void handle_md_output(struct command_context_s *cmd_ctx,
1989 struct target_s *target, u32 address, unsigned size,
1990 unsigned count, const u8 *buffer)
1991 {
1992 const unsigned line_bytecnt = 32;
1993 unsigned line_modulo = line_bytecnt / size;
1994
1995 char output[line_bytecnt * 4 + 1];
1996 unsigned output_len = 0;
1997
1998 const char *value_fmt;
1999 switch (size) {
2000 case 4: value_fmt = "%8.8x "; break;
2001 case 2: value_fmt = "%4.2x "; break;
2002 case 1: value_fmt = "%2.2x "; break;
2003 default:
2004 LOG_ERROR("invalid memory read size: %u", size);
2005 exit(-1);
2006 }
2007
2008 for (unsigned i = 0; i < count; i++)
2009 {
2010 if (i % line_modulo == 0)
2011 {
2012 output_len += snprintf(output + output_len,
2013 sizeof(output) - output_len,
2014 "0x%8.8x: ", address + (i*size));
2015 }
2016
2017 u32 value=0;
2018 const u8 *value_ptr = buffer + i * size;
2019 switch (size) {
2020 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2021 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2022 case 1: value = *value_ptr;
2023 }
2024 output_len += snprintf(output + output_len,
2025 sizeof(output) - output_len,
2026 value_fmt, value);
2027
2028 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2029 {
2030 command_print(cmd_ctx, "%s", output);
2031 output_len = 0;
2032 }
2033 }
2034 }
2035
2036 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2037 {
2038 if (argc < 1)
2039 return ERROR_COMMAND_SYNTAX_ERROR;
2040
2041 unsigned size = 0;
2042 switch (cmd[2]) {
2043 case 'w': size = 4; break;
2044 case 'h': size = 2; break;
2045 case 'b': size = 1; break;
2046 default: return ERROR_COMMAND_SYNTAX_ERROR;
2047 }
2048
2049 u32 address;
2050 int retval = parse_u32(args[0], &address);
2051 if (ERROR_OK != retval)
2052 return retval;
2053
2054 unsigned count = 1;
2055 if (argc == 2)
2056 {
2057 retval = parse_uint(args[1], &count);
2058 if (ERROR_OK != retval)
2059 return retval;
2060 }
2061
2062 u8 *buffer = calloc(count, size);
2063
2064 target_t *target = get_current_target(cmd_ctx);
2065 retval = target_read_memory(target,
2066 address, size, count, buffer);
2067 if (ERROR_OK == retval)
2068 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2069
2070 free(buffer);
2071
2072 return retval;
2073 }
2074
2075 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2076 {
2077 if ((argc < 2) || (argc > 3))
2078 return ERROR_COMMAND_SYNTAX_ERROR;
2079
2080 u32 address;
2081 int retval = parse_u32(args[0], &address);
2082 if (ERROR_OK != retval)
2083 return retval;
2084
2085 u32 value;
2086 retval = parse_u32(args[1], &value);
2087 if (ERROR_OK != retval)
2088 return retval;
2089
2090 unsigned count = 1;
2091 if (argc == 3)
2092 {
2093 retval = parse_uint(args[2], &count);
2094 if (ERROR_OK != retval)
2095 return retval;
2096 }
2097
2098 target_t *target = get_current_target(cmd_ctx);
2099 unsigned wordsize;
2100 u8 value_buf[4];
2101 switch (cmd[2])
2102 {
2103 case 'w':
2104 wordsize = 4;
2105 target_buffer_set_u32(target, value_buf, value);
2106 break;
2107 case 'h':
2108 wordsize = 2;
2109 target_buffer_set_u16(target, value_buf, value);
2110 break;
2111 case 'b':
2112 wordsize = 1;
2113 value_buf[0] = value;
2114 break;
2115 default:
2116 return ERROR_COMMAND_SYNTAX_ERROR;
2117 }
2118 for (unsigned i = 0; i < count; i++)
2119 {
2120 retval = target_write_memory(target,
2121 address + i * wordsize, wordsize, 1, value_buf);
2122 if (ERROR_OK != retval)
2123 return retval;
2124 keep_alive();
2125 }
2126
2127 return ERROR_OK;
2128
2129 }
2130
2131 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2132 {
2133 u8 *buffer;
2134 u32 buf_cnt;
2135 u32 image_size;
2136 u32 min_address=0;
2137 u32 max_address=0xffffffff;
2138 int i;
2139 int retval, retvaltemp;
2140
2141 image_t image;
2142
2143 duration_t duration;
2144 char *duration_text;
2145
2146 target_t *target = get_current_target(cmd_ctx);
2147
2148 if ((argc < 1)||(argc > 5))
2149 {
2150 return ERROR_COMMAND_SYNTAX_ERROR;
2151 }
2152
2153 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2154 if (argc >= 2)
2155 {
2156 u32 addr;
2157 retval = parse_u32(args[1], &addr);
2158 if (ERROR_OK != retval)
2159 return ERROR_COMMAND_SYNTAX_ERROR;
2160 image.base_address = addr;
2161 image.base_address_set = 1;
2162 }
2163 else
2164 {
2165 image.base_address_set = 0;
2166 }
2167
2168
2169 image.start_address_set = 0;
2170
2171 if (argc>=4)
2172 {
2173 retval = parse_u32(args[3], &min_address);
2174 if (ERROR_OK != retval)
2175 return ERROR_COMMAND_SYNTAX_ERROR;
2176 }
2177 if (argc>=5)
2178 {
2179 retval = parse_u32(args[4], &max_address);
2180 if (ERROR_OK != retval)
2181 return ERROR_COMMAND_SYNTAX_ERROR;
2182 // use size (given) to find max (required)
2183 max_address += min_address;
2184 }
2185
2186 if (min_address>max_address)
2187 {
2188 return ERROR_COMMAND_SYNTAX_ERROR;
2189 }
2190
2191 duration_start_measure(&duration);
2192
2193 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2194 {
2195 return ERROR_OK;
2196 }
2197
2198 image_size = 0x0;
2199 retval = ERROR_OK;
2200 for (i = 0; i < image.num_sections; i++)
2201 {
2202 buffer = malloc(image.sections[i].size);
2203 if (buffer == NULL)
2204 {
2205 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2206 break;
2207 }
2208
2209 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2210 {
2211 free(buffer);
2212 break;
2213 }
2214
2215 u32 offset=0;
2216 u32 length=buf_cnt;
2217
2218 /* DANGER!!! beware of unsigned comparision here!!! */
2219
2220 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2221 (image.sections[i].base_address<max_address))
2222 {
2223 if (image.sections[i].base_address<min_address)
2224 {
2225 /* clip addresses below */
2226 offset+=min_address-image.sections[i].base_address;
2227 length-=offset;
2228 }
2229
2230 if (image.sections[i].base_address+buf_cnt>max_address)
2231 {
2232 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2233 }
2234
2235 if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2236 {
2237 free(buffer);
2238 break;
2239 }
2240 image_size += length;
2241 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2242 }
2243
2244 free(buffer);
2245 }
2246
2247 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2248 {
2249 image_close(&image);
2250 return retvaltemp;
2251 }
2252
2253 if (retval==ERROR_OK)
2254 {
2255 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2256 }
2257 free(duration_text);
2258
2259 image_close(&image);
2260
2261 return retval;
2262
2263 }
2264
2265 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2266 {
2267 fileio_t fileio;
2268
2269 u8 buffer[560];
2270 int retvaltemp;
2271
2272 duration_t duration;
2273 char *duration_text;
2274
2275 target_t *target = get_current_target(cmd_ctx);
2276
2277 if (argc != 3)
2278 {
2279 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2280 return ERROR_OK;
2281 }
2282
2283 u32 address;
2284 int retval = parse_u32(args[1], &address);
2285 if (ERROR_OK != retval)
2286 return retval;
2287
2288 u32 size;
2289 retval = parse_u32(args[2], &size);
2290 if (ERROR_OK != retval)
2291 return retval;
2292
2293 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2294 {
2295 return ERROR_OK;
2296 }
2297
2298 duration_start_measure(&duration);
2299
2300 while (size > 0)
2301 {
2302 u32 size_written;
2303 u32 this_run_size = (size > 560) ? 560 : size;
2304
2305 retval = target_read_buffer(target, address, this_run_size, buffer);
2306 if (retval != ERROR_OK)
2307 {
2308 break;
2309 }
2310
2311 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2312 if (retval != ERROR_OK)
2313 {
2314 break;
2315 }
2316
2317 size -= this_run_size;
2318 address += this_run_size;
2319 }
2320
2321 if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2322 return retvaltemp;
2323
2324 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2325 return retvaltemp;
2326
2327 if (retval==ERROR_OK)
2328 {
2329 command_print(cmd_ctx, "dumped %lld byte in %s",
2330 fileio.size, duration_text);
2331 free(duration_text);
2332 }
2333
2334 return retval;
2335 }
2336
2337 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2338 {
2339 u8 *buffer;
2340 u32 buf_cnt;
2341 u32 image_size;
2342 int i;
2343 int retval, retvaltemp;
2344 u32 checksum = 0;
2345 u32 mem_checksum = 0;
2346
2347 image_t image;
2348
2349 duration_t duration;
2350 char *duration_text;
2351
2352 target_t *target = get_current_target(cmd_ctx);
2353
2354 if (argc < 1)
2355 {
2356 return ERROR_COMMAND_SYNTAX_ERROR;
2357 }
2358
2359 if (!target)
2360 {
2361 LOG_ERROR("no target selected");
2362 return ERROR_FAIL;
2363 }
2364
2365 duration_start_measure(&duration);
2366
2367 if (argc >= 2)
2368 {
2369 u32 addr;
2370 retval = parse_u32(args[1], &addr);
2371 if (ERROR_OK != retval)
2372 return ERROR_COMMAND_SYNTAX_ERROR;
2373 image.base_address = addr;
2374 image.base_address_set = 1;
2375 }
2376 else
2377 {
2378 image.base_address_set = 0;
2379 image.base_address = 0x0;
2380 }
2381
2382 image.start_address_set = 0;
2383
2384 if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2385 {
2386 return retval;
2387 }
2388
2389 image_size = 0x0;
2390 retval=ERROR_OK;
2391 for (i = 0; i < image.num_sections; i++)
2392 {
2393 buffer = malloc(image.sections[i].size);
2394 if (buffer == NULL)
2395 {
2396 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2397 break;
2398 }
2399 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2400 {
2401 free(buffer);
2402 break;
2403 }
2404
2405 if (verify)
2406 {
2407 /* calculate checksum of image */
2408 image_calculate_checksum( buffer, buf_cnt, &checksum );
2409
2410 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2411 if( retval != ERROR_OK )
2412 {
2413 free(buffer);
2414 break;
2415 }
2416
2417 if( checksum != mem_checksum )
2418 {
2419 /* failed crc checksum, fall back to a binary compare */
2420 u8 *data;
2421
2422 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2423
2424 data = (u8*)malloc(buf_cnt);
2425
2426 /* Can we use 32bit word accesses? */
2427 int size = 1;
2428 int count = buf_cnt;
2429 if ((count % 4) == 0)
2430 {
2431 size *= 4;
2432 count /= 4;
2433 }
2434 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2435 if (retval == ERROR_OK)
2436 {
2437 u32 t;
2438 for (t = 0; t < buf_cnt; t++)
2439 {
2440 if (data[t] != buffer[t])
2441 {
2442 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2443 free(data);
2444 free(buffer);
2445 retval=ERROR_FAIL;
2446 goto done;
2447 }
2448 if ((t%16384)==0)
2449 {
2450 keep_alive();
2451 }
2452 }
2453 }
2454
2455 free(data);
2456 }
2457 } else
2458 {
2459 command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2460 }
2461
2462 free(buffer);
2463 image_size += buf_cnt;
2464 }
2465 done:
2466
2467 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2468 {
2469 image_close(&image);
2470 return retvaltemp;
2471 }
2472
2473 if (retval==ERROR_OK)
2474 {
2475 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2476 }
2477 free(duration_text);
2478
2479 image_close(&image);
2480
2481 return retval;
2482 }
2483
2484 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2485 {
2486 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2487 }
2488
2489 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2490 {
2491 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2492 }
2493
2494 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2495 {
2496 target_t *target = get_current_target(cmd_ctx);
2497 breakpoint_t *breakpoint = target->breakpoints;
2498 while (breakpoint)
2499 {
2500 if (breakpoint->type == BKPT_SOFT)
2501 {
2502 char* buf = buf_to_str(breakpoint->orig_instr,
2503 breakpoint->length, 16);
2504 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2505 breakpoint->address, breakpoint->length,
2506 breakpoint->set, buf);
2507 free(buf);
2508 }
2509 else
2510 {
2511 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2512 breakpoint->address, breakpoint->length, breakpoint->set);
2513 }
2514
2515 breakpoint = breakpoint->next;
2516 }
2517 return ERROR_OK;
2518 }
2519
2520 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2521 u32 addr, u32 length, int hw)
2522 {
2523 target_t *target = get_current_target(cmd_ctx);
2524 int retval = breakpoint_add(target, addr, length, hw);
2525 if (ERROR_OK == retval)
2526 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2527 else
2528 LOG_ERROR("Failure setting breakpoint");
2529 return retval;
2530 }
2531
2532 static int handle_bp_command(struct command_context_s *cmd_ctx,
2533 char *cmd, char **args, int argc)
2534 {
2535 if (argc == 0)
2536 return handle_bp_command_list(cmd_ctx);
2537
2538 if (argc < 2 || argc > 3)
2539 {
2540 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2541 return ERROR_COMMAND_SYNTAX_ERROR;
2542 }
2543
2544 u32 addr = strtoul(args[0], NULL, 0);
2545 u32 length = strtoul(args[1], NULL, 0);
2546
2547 int hw = BKPT_SOFT;
2548 if (argc == 3)
2549 {
2550 if (strcmp(args[2], "hw") == 0)
2551 hw = BKPT_HARD;
2552 else
2553 return ERROR_COMMAND_SYNTAX_ERROR;
2554 }
2555
2556 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2557 }
2558
2559 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2560 {
2561 target_t *target = get_current_target(cmd_ctx);
2562
2563 if (argc > 0)
2564 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2565
2566 return ERROR_OK;
2567 }
2568
2569 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2570 {
2571 target_t *target = get_current_target(cmd_ctx);
2572 int retval;
2573
2574 if (argc == 0)
2575 {
2576 watchpoint_t *watchpoint = target->watchpoints;
2577
2578 while (watchpoint)
2579 {
2580 command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2581 watchpoint = watchpoint->next;
2582 }
2583 }
2584 else if (argc >= 2)
2585 {
2586 enum watchpoint_rw type = WPT_ACCESS;
2587 u32 data_value = 0x0;
2588 u32 data_mask = 0xffffffff;
2589
2590 if (argc >= 3)
2591 {
2592 switch(args[2][0])
2593 {
2594 case 'r':
2595 type = WPT_READ;
2596 break;
2597 case 'w':
2598 type = WPT_WRITE;
2599 break;
2600 case 'a':
2601 type = WPT_ACCESS;
2602 break;
2603 default:
2604 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2605 return ERROR_OK;
2606 }
2607 }
2608 if (argc >= 4)
2609 {
2610 data_value = strtoul(args[3], NULL, 0);
2611 }
2612 if (argc >= 5)
2613 {
2614 data_mask = strtoul(args[4], NULL, 0);
2615 }
2616
2617 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2618 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2619 {
2620 LOG_ERROR("Failure setting breakpoints");
2621 }
2622 }
2623 else
2624 {
2625 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2626 }
2627
2628 return ERROR_OK;
2629 }
2630
2631 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2632 {
2633 if (argc != 1)
2634 return ERROR_COMMAND_SYNTAX_ERROR;
2635
2636 target_t *target = get_current_target(cmd_ctx);
2637 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2638
2639 return ERROR_OK;
2640 }
2641
2642
2643 /**
2644 * Translate a virtual address to a physical address.
2645 *
2646 * The low-level target implementation must have logged a detailed error
2647 * which is forwarded to telnet/GDB session.
2648 */
2649 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2650 char *cmd, char **args, int argc)
2651 {
2652 if (argc != 1)
2653 return ERROR_COMMAND_SYNTAX_ERROR;
2654
2655 target_t *target = get_current_target(cmd_ctx);
2656 u32 va = strtoul(args[0], NULL, 0);
2657 u32 pa;
2658
2659 int retval = target->type->virt2phys(target, va, &pa);
2660 if (retval == ERROR_OK)
2661 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2662
2663 return retval;
2664 }
2665
2666 static void writeData(FILE *f, const void *data, size_t len)
2667 {
2668 size_t written = fwrite(data, 1, len, f);
2669 if (written != len)
2670 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2671 }
2672
2673 static void writeLong(FILE *f, int l)
2674 {
2675 int i;
2676 for (i=0; i<4; i++)
2677 {
2678 char c=(l>>(i*8))&0xff;
2679 writeData(f, &c, 1);
2680 }
2681
2682 }
2683
2684 static void writeString(FILE *f, char *s)
2685 {
2686 writeData(f, s, strlen(s));
2687 }
2688
2689 /* Dump a gmon.out histogram file. */
2690 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2691 {
2692 u32 i;
2693 FILE *f=fopen(filename, "w");
2694 if (f==NULL)
2695 return;
2696 writeString(f, "gmon");
2697 writeLong(f, 0x00000001); /* Version */
2698 writeLong(f, 0); /* padding */
2699 writeLong(f, 0); /* padding */
2700 writeLong(f, 0); /* padding */
2701
2702 u8 zero = 0; /* GMON_TAG_TIME_HIST */
2703 writeData(f, &zero, 1);
2704
2705 /* figure out bucket size */
2706 u32 min=samples[0];
2707 u32 max=samples[0];
2708 for (i=0; i<sampleNum; i++)
2709 {
2710 if (min>samples[i])
2711 {
2712 min=samples[i];
2713 }
2714 if (max<samples[i])
2715 {
2716 max=samples[i];
2717 }
2718 }
2719
2720 int addressSpace=(max-min+1);
2721
2722 static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2723 u32 length = addressSpace;
2724 if (length > maxBuckets)
2725 {
2726 length=maxBuckets;
2727 }
2728 int *buckets=malloc(sizeof(int)*length);
2729 if (buckets==NULL)
2730 {
2731 fclose(f);
2732 return;
2733 }
2734 memset(buckets, 0, sizeof(int)*length);
2735 for (i=0; i<sampleNum;i++)
2736 {
2737 u32 address=samples[i];
2738 long long a=address-min;
2739 long long b=length-1;
2740 long long c=addressSpace-1;
2741 int index=(a*b)/c; /* danger!!!! int32 overflows */
2742 buckets[index]++;
2743 }
2744
2745 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2746 writeLong(f, min); /* low_pc */
2747 writeLong(f, max); /* high_pc */
2748 writeLong(f, length); /* # of samples */
2749 writeLong(f, 64000000); /* 64MHz */
2750 writeString(f, "seconds");
2751 for (i=0; i<(15-strlen("seconds")); i++)
2752 writeData(f, &zero, 1);
2753 writeString(f, "s");
2754
2755 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2756
2757 char *data=malloc(2*length);
2758 if (data!=NULL)
2759 {
2760 for (i=0; i<length;i++)
2761 {
2762 int val;
2763 val=buckets[i];
2764 if (val>65535)
2765 {
2766 val=65535;
2767 }
2768 data[i*2]=val&0xff;
2769 data[i*2+1]=(val>>8)&0xff;
2770 }
2771 free(buckets);
2772 writeData(f, data, length * 2);
2773 free(data);
2774 } else
2775 {
2776 free(buckets);
2777 }
2778
2779 fclose(f);
2780 }
2781
2782 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2783 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2784 {
2785 target_t *target = get_current_target(cmd_ctx);
2786 struct timeval timeout, now;
2787
2788 gettimeofday(&timeout, NULL);
2789 if (argc!=2)
2790 {
2791 return ERROR_COMMAND_SYNTAX_ERROR;
2792 }
2793 char *end;
2794 timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2795 if (*end)
2796 {
2797 return ERROR_OK;
2798 }
2799
2800 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2801
2802 static const int maxSample=10000;
2803 u32 *samples=malloc(sizeof(u32)*maxSample);
2804 if (samples==NULL)
2805 return ERROR_OK;
2806
2807 int numSamples=0;
2808 int retval=ERROR_OK;
2809 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2810 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2811
2812 for (;;)
2813 {
2814 target_poll(target);
2815 if (target->state == TARGET_HALTED)
2816 {
2817 u32 t=*((u32 *)reg->value);
2818 samples[numSamples++]=t;
2819 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2820 target_poll(target);
2821 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2822 } else if (target->state == TARGET_RUNNING)
2823 {
2824 /* We want to quickly sample the PC. */
2825 if((retval = target_halt(target)) != ERROR_OK)
2826 {
2827 free(samples);
2828 return retval;
2829 }
2830 } else
2831 {
2832 command_print(cmd_ctx, "Target not halted or running");
2833 retval=ERROR_OK;
2834 break;
2835 }
2836 if (retval!=ERROR_OK)
2837 {
2838 break;
2839 }
2840
2841 gettimeofday(&now, NULL);
2842 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2843 {
2844 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2845 if((retval = target_poll(target)) != ERROR_OK)
2846 {
2847 free(samples);
2848 return retval;
2849 }
2850 if (target->state == TARGET_HALTED)
2851 {
2852 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2853 }
2854 if((retval = target_poll(target)) != ERROR_OK)
2855 {
2856 free(samples);
2857 return retval;
2858 }
2859 writeGmon(samples, numSamples, args[1]);
2860 command_print(cmd_ctx, "Wrote %s", args[1]);
2861 break;
2862 }
2863 }
2864 free(samples);
2865
2866 return ERROR_OK;
2867 }
2868
2869 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2870 {
2871 char *namebuf;
2872 Jim_Obj *nameObjPtr, *valObjPtr;
2873 int result;
2874
2875 namebuf = alloc_printf("%s(%d)", varname, idx);
2876 if (!namebuf)
2877 return JIM_ERR;
2878
2879 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2880 valObjPtr = Jim_NewIntObj(interp, val);
2881 if (!nameObjPtr || !valObjPtr)
2882 {
2883 free(namebuf);
2884 return JIM_ERR;
2885 }
2886
2887 Jim_IncrRefCount(nameObjPtr);
2888 Jim_IncrRefCount(valObjPtr);
2889 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2890 Jim_DecrRefCount(interp, nameObjPtr);
2891 Jim_DecrRefCount(interp, valObjPtr);
2892 free(namebuf);
2893 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2894 return result;
2895 }
2896
2897 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2898 {
2899 command_context_t *context;
2900 target_t *target;
2901
2902 context = Jim_GetAssocData(interp, "context");
2903 if (context == NULL)
2904 {
2905 LOG_ERROR("mem2array: no command context");
2906 return JIM_ERR;
2907 }
2908 target = get_current_target(context);
2909 if (target == NULL)
2910 {
2911 LOG_ERROR("mem2array: no current target");
2912 return JIM_ERR;
2913 }
2914
2915 return target_mem2array(interp, target, argc-1, argv+1);
2916 }
2917
2918 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2919 {
2920 long l;
2921 u32 width;
2922 int len;
2923 u32 addr;
2924 u32 count;
2925 u32 v;
2926 const char *varname;
2927 u8 buffer[4096];
2928 int n, e, retval;
2929 u32 i;
2930
2931 /* argv[1] = name of array to receive the data
2932 * argv[2] = desired width
2933 * argv[3] = memory address
2934 * argv[4] = count of times to read
2935 */
2936 if (argc != 4) {
2937 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2938 return JIM_ERR;
2939 }
2940 varname = Jim_GetString(argv[0], &len);
2941 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2942
2943 e = Jim_GetLong(interp, argv[1], &l);
2944 width = l;
2945 if (e != JIM_OK) {
2946 return e;
2947 }
2948
2949 e = Jim_GetLong(interp, argv[2], &l);
2950 addr = l;
2951 if (e != JIM_OK) {
2952 return e;
2953 }
2954 e = Jim_GetLong(interp, argv[3], &l);
2955 len = l;
2956 if (e != JIM_OK) {
2957 return e;
2958 }
2959 switch (width) {
2960 case 8:
2961 width = 1;
2962 break;
2963 case 16:
2964 width = 2;
2965 break;
2966 case 32:
2967 width = 4;
2968 break;
2969 default:
2970 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2971 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2972 return JIM_ERR;
2973 }
2974 if (len == 0) {
2975 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2976 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2977 return JIM_ERR;
2978 }
2979 if ((addr + (len * width)) < addr) {
2980 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2981 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2982 return JIM_ERR;
2983 }
2984 /* absurd transfer size? */
2985 if (len > 65536) {
2986 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2987 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2988 return JIM_ERR;
2989 }
2990
2991 if ((width == 1) ||
2992 ((width == 2) && ((addr & 1) == 0)) ||
2993 ((width == 4) && ((addr & 3) == 0))) {
2994 /* all is well */
2995 } else {
2996 char buf[100];
2997 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2998 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2999 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3000 return JIM_ERR;
3001 }
3002
3003 /* Transfer loop */
3004
3005 /* index counter */
3006 n = 0;
3007 /* assume ok */
3008 e = JIM_OK;
3009 while (len) {
3010 /* Slurp... in buffer size chunks */
3011
3012 count = len; /* in objects.. */
3013 if (count > (sizeof(buffer)/width)) {
3014 count = (sizeof(buffer)/width);
3015 }
3016
3017 retval = target_read_memory( target, addr, width, count, buffer );
3018 if (retval != ERROR_OK) {
3019 /* BOO !*/
3020 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3021 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3022 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3023 e = JIM_ERR;
3024 len = 0;
3025 } else {
3026 v = 0; /* shut up gcc */
3027 for (i = 0 ;i < count ;i++, n++) {
3028 switch (width) {
3029 case 4:
3030 v = target_buffer_get_u32(target, &buffer[i*width]);
3031 break;
3032 case 2:
3033 v = target_buffer_get_u16(target, &buffer[i*width]);
3034 break;
3035 case 1:
3036 v = buffer[i] & 0x0ff;
3037 break;
3038 }
3039 new_int_array_element(interp, varname, n, v);
3040 }
3041 len -= count;
3042 }
3043 }
3044
3045 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3046
3047 return JIM_OK;
3048 }
3049
3050 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
3051 {
3052 char *namebuf;
3053 Jim_Obj *nameObjPtr, *valObjPtr;
3054 int result;
3055 long l;
3056
3057 namebuf = alloc_printf("%s(%d)", varname, idx);
3058 if (!namebuf)
3059 return JIM_ERR;
3060
3061 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3062 if (!nameObjPtr)
3063 {
3064 free(namebuf);
3065 return JIM_ERR;
3066 }
3067
3068 Jim_IncrRefCount(nameObjPtr);
3069 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3070 Jim_DecrRefCount(interp, nameObjPtr);
3071 free(namebuf);
3072 if (valObjPtr == NULL)
3073 return JIM_ERR;
3074
3075 result = Jim_GetLong(interp, valObjPtr, &l);
3076 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3077 *val = l;
3078 return result;
3079 }
3080
3081 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3082 {
3083 command_context_t *context;
3084 target_t *target;
3085
3086 context = Jim_GetAssocData(interp, "context");
3087 if (context == NULL){
3088 LOG_ERROR("array2mem: no command context");
3089 return JIM_ERR;
3090 }
3091 target = get_current_target(context);
3092 if (target == NULL){
3093 LOG_ERROR("array2mem: no current target");
3094 return JIM_ERR;
3095 }
3096
3097 return target_array2mem( interp,target, argc-1, argv+1 );
3098 }
3099
3100 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3101 {
3102 long l;
3103 u32 width;
3104 int len;
3105 u32 addr;
3106 u32 count;
3107 u32 v;
3108 const char *varname;
3109 u8 buffer[4096];
3110 int n, e, retval;
3111 u32 i;
3112
3113 /* argv[1] = name of array to get the data
3114 * argv[2] = desired width
3115 * argv[3] = memory address
3116 * argv[4] = count to write
3117 */
3118 if (argc != 4) {
3119 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3120 return JIM_ERR;
3121 }
3122 varname = Jim_GetString(argv[0], &len);
3123 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3124
3125 e = Jim_GetLong(interp, argv[1], &l);
3126 width = l;
3127 if (e != JIM_OK) {
3128 return e;
3129 }
3130
3131 e = Jim_GetLong(interp, argv[2], &l);
3132 addr = l;
3133 if (e != JIM_OK) {
3134 return e;
3135 }
3136 e = Jim_GetLong(interp, argv[3], &l);
3137 len = l;
3138 if (e != JIM_OK) {
3139 return e;
3140 }
3141 switch (width) {
3142 case 8:
3143 width = 1;
3144 break;
3145 case 16:
3146 width = 2;
3147 break;
3148 case 32:
3149 width = 4;
3150 break;
3151 default:
3152 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3153 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3154 return JIM_ERR;
3155 }
3156 if (len == 0) {
3157 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3158 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3159 return JIM_ERR;
3160 }
3161 if ((addr + (len * width)) < addr) {
3162 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3163 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3164 return JIM_ERR;
3165 }
3166 /* absurd transfer size? */
3167 if (len > 65536) {
3168 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3169 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3170 return JIM_ERR;
3171 }
3172
3173 if ((width == 1) ||
3174 ((width == 2) && ((addr & 1) == 0)) ||
3175 ((width == 4) && ((addr & 3) == 0))) {
3176 /* all is well */
3177 } else {
3178 char buf[100];
3179 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3180 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3181 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3182 return JIM_ERR;
3183 }
3184
3185 /* Transfer loop */
3186
3187 /* index counter */
3188 n = 0;
3189 /* assume ok */
3190 e = JIM_OK;
3191 while (len) {
3192 /* Slurp... in buffer size chunks */
3193
3194 count = len; /* in objects.. */
3195 if (count > (sizeof(buffer)/width)) {
3196 count = (sizeof(buffer)/width);
3197 }
3198
3199 v = 0; /* shut up gcc */
3200 for (i = 0 ;i < count ;i++, n++) {
3201 get_int_array_element(interp, varname, n, &v);
3202 switch (width) {
3203 case 4:
3204 target_buffer_set_u32(target, &buffer[i*width], v);
3205 break;
3206 case 2:
3207 target_buffer_set_u16(target, &buffer[i*width], v);
3208 break;
3209 case 1:
3210 buffer[i] = v & 0x0ff;
3211 break;
3212 }
3213 }
3214 len -= count;
3215
3216 retval = target_write_memory(target, addr, width, count, buffer);
3217 if (retval != ERROR_OK) {
3218 /* BOO !*/
3219 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3220 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3221 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3222 e = JIM_ERR;
3223 len = 0;
3224 }
3225 }
3226
3227 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3228
3229 return JIM_OK;
3230 }
3231
3232 void target_all_handle_event( enum target_event e )
3233 {
3234 target_t *target;
3235
3236 LOG_DEBUG( "**all*targets: event: %d, %s",
3237 e,
3238 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3239
3240 target = all_targets;
3241 while (target){
3242 target_handle_event( target, e );
3243 target = target->next;
3244 }
3245 }
3246
3247 void target_handle_event( target_t *target, enum target_event e )
3248 {
3249 target_event_action_t *teap;
3250 int done;
3251
3252 teap = target->event_action;
3253
3254 done = 0;
3255 while( teap ){
3256 if( teap->event == e ){
3257 done = 1;
3258 LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3259 target->target_number,
3260 target->cmd_name,
3261 target_get_name(target),
3262 e,
3263 Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3264 Jim_GetString( teap->body, NULL ) );
3265 if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3266 {
3267 Jim_PrintErrorMessage(interp);
3268 }
3269 }
3270 teap = teap->next;
3271 }
3272 if( !done ){
3273 LOG_DEBUG( "event: %d %s - no action",
3274 e,
3275 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3276 }
3277 }
3278
3279 enum target_cfg_param {
3280 TCFG_TYPE,
3281 TCFG_EVENT,
3282 TCFG_WORK_AREA_VIRT,
3283 TCFG_WORK_AREA_PHYS,
3284 TCFG_WORK_AREA_SIZE,
3285 TCFG_WORK_AREA_BACKUP,
3286 TCFG_ENDIAN,
3287 TCFG_VARIANT,
3288 TCFG_CHAIN_POSITION,
3289 };
3290
3291 static Jim_Nvp nvp_config_opts[] = {
3292 { .name = "-type", .value = TCFG_TYPE },
3293 { .name = "-event", .value = TCFG_EVENT },
3294 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3295 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3296 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3297 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3298 { .name = "-endian" , .value = TCFG_ENDIAN },
3299 { .name = "-variant", .value = TCFG_VARIANT },
3300 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3301
3302 { .name = NULL, .value = -1 }
3303 };
3304
3305 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3306 {
3307 Jim_Nvp *n;
3308 Jim_Obj *o;
3309 jim_wide w;
3310 char *cp;
3311 int e;
3312
3313 /* parse config or cget options ... */
3314 while( goi->argc > 0 ){
3315 Jim_SetEmptyResult( goi->interp );
3316 /* Jim_GetOpt_Debug( goi ); */
3317
3318 if( target->type->target_jim_configure ){
3319 /* target defines a configure function */
3320 /* target gets first dibs on parameters */
3321 e = (*(target->type->target_jim_configure))( target, goi );
3322 if( e == JIM_OK ){
3323 /* more? */
3324 continue;
3325 }
3326 if( e == JIM_ERR ){
3327 /* An error */
3328 return e;
3329 }
3330 /* otherwise we 'continue' below */
3331 }
3332 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3333 if( e != JIM_OK ){
3334 Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3335 return e;
3336 }
3337 switch( n->value ){
3338 case TCFG_TYPE:
3339 /* not setable */
3340 if( goi->isconfigure ){
3341 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3342 return JIM_ERR;
3343 } else {
3344 no_params:
3345 if( goi->argc != 0 ){
3346 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3347 return JIM_ERR;
3348 }
3349 }
3350 Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3351 /* loop for more */
3352 break;
3353 case TCFG_EVENT:
3354 if( goi->argc == 0 ){
3355 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3356 return JIM_ERR;
3357 }
3358
3359 e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3360 if( e != JIM_OK ){
3361 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3362 return e;
3363 }
3364
3365 if( goi->isconfigure ){
3366 if( goi->argc != 1 ){
3367 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3368 return JIM_ERR;
3369 }
3370 } else {
3371 if( goi->argc != 0 ){
3372 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3373 return JIM_ERR;
3374 }
3375 }
3376
3377 {
3378 target_event_action_t *teap;
3379
3380 teap = target->event_action;
3381 /* replace existing? */
3382 while( teap ){
3383 if( teap->event == (enum target_event)n->value ){
3384 break;
3385 }
3386 teap = teap->next;
3387 }
3388
3389 if( goi->isconfigure ){
3390 if( teap == NULL ){
3391 /* create new */
3392 teap = calloc( 1, sizeof(*teap) );
3393 }
3394 teap->event = n->value;
3395 Jim_GetOpt_Obj( goi, &o );
3396 if( teap->body ){
3397 Jim_DecrRefCount( interp, teap->body );
3398 }
3399 teap->body = Jim_DuplicateObj( goi->interp, o );
3400 /*
3401 * FIXME:
3402 * Tcl/TK - "tk events" have a nice feature.
3403 * See the "BIND" command.
3404 * We should support that here.
3405 * You can specify %X and %Y in the event code.
3406 * The idea is: %T - target name.
3407 * The idea is: %N - target number
3408 * The idea is: %E - event name.
3409 */
3410 Jim_IncrRefCount( teap->body );
3411
3412 /* add to head of event list */
3413 teap->next = target->event_action;
3414 target->event_action = teap;
3415 Jim_SetEmptyResult(goi->interp);
3416 } else {
3417 /* get */
3418 if( teap == NULL ){
3419 Jim_SetEmptyResult( goi->interp );
3420 } else {
3421 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3422 }
3423 }
3424 }
3425 /* loop for more */
3426 break;
3427
3428 case TCFG_WORK_AREA_VIRT:
3429 if( goi->isconfigure ){
3430 target_free_all_working_areas(target);
3431 e = Jim_GetOpt_Wide( goi, &w );
3432 if( e != JIM_OK ){
3433 return e;
3434 }
3435 target->working_area_virt = w;
3436 } else {
3437 if( goi->argc != 0 ){
3438 goto no_params;
3439 }
3440 }
3441 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3442 /* loop for more */
3443 break;
3444
3445 case TCFG_WORK_AREA_PHYS:
3446 if( goi->isconfigure ){
3447 target_free_all_working_areas(target);
3448 e = Jim_GetOpt_Wide( goi, &w );
3449 if( e != JIM_OK ){
3450 return e;
3451 }
3452 target->working_area_phys = w;
3453 } else {
3454 if( goi->argc != 0 ){
3455 goto no_params;
3456 }
3457 }
3458 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3459 /* loop for more */
3460 break;
3461
3462 case TCFG_WORK_AREA_SIZE:
3463 if( goi->isconfigure ){
3464 target_free_all_working_areas(target);
3465 e = Jim_GetOpt_Wide( goi, &w );
3466 if( e != JIM_OK ){
3467 return e;
3468 }
3469 target->working_area_size = w;
3470 } else {
3471 if( goi->argc != 0 ){
3472 goto no_params;
3473 }
3474 }
3475 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3476 /* loop for more */
3477 break;
3478
3479 case TCFG_WORK_AREA_BACKUP:
3480 if( goi->isconfigure ){
3481 target_free_all_working_areas(target);
3482 e = Jim_GetOpt_Wide( goi, &w );
3483 if( e != JIM_OK ){
3484 return e;
3485 }
3486 /* make this exactly 1 or 0 */
3487 target->backup_working_area = (!!w);
3488 } else {
3489 if( goi->argc != 0 ){
3490 goto no_params;
3491 }
3492 }
3493 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3494 /* loop for more e*/
3495 break;
3496
3497 case TCFG_ENDIAN:
3498 if( goi->isconfigure ){
3499 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3500 if( e != JIM_OK ){
3501 Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3502 return e;
3503 }
3504 target->endianness = n->value;
3505 } else {
3506 if( goi->argc != 0 ){
3507 goto no_params;
3508 }
3509 }
3510 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3511 if( n->name == NULL ){
3512 target->endianness = TARGET_LITTLE_ENDIAN;
3513 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3514 }
3515 Jim_SetResultString( goi->interp, n->name, -1 );
3516 /* loop for more */
3517 break;
3518
3519 case TCFG_VARIANT:
3520 if( goi->isconfigure ){
3521 if( goi->argc < 1 ){
3522 Jim_SetResult_sprintf( goi->interp,
3523 "%s ?STRING?",
3524 n->name );
3525 return JIM_ERR;
3526 }
3527 if( target->variant ){
3528 free((void *)(target->variant));
3529 }
3530 e = Jim_GetOpt_String( goi, &cp, NULL );
3531 target->variant = strdup(cp);
3532 } else {
3533 if( goi->argc != 0 ){
3534 goto no_params;
3535 }
3536 }
3537 Jim_SetResultString( goi->interp, target->variant,-1 );
3538 /* loop for more */
3539 break;
3540 case TCFG_CHAIN_POSITION:
3541 if( goi->isconfigure ){
3542 Jim_Obj *o;
3543 jtag_tap_t *tap;
3544 target_free_all_working_areas(target);
3545 e = Jim_GetOpt_Obj( goi, &o );
3546 if( e != JIM_OK ){
3547 return e;
3548 }
3549 tap = jtag_tap_by_jim_obj( goi->interp, o );
3550 if( tap == NULL ){
3551 return JIM_ERR;
3552 }
3553 /* make this exactly 1 or 0 */
3554 target->tap = tap;
3555 } else {
3556 if( goi->argc != 0 ){
3557 goto no_params;
3558 }
3559 }
3560 Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3561 /* loop for more e*/
3562 break;
3563 }
3564 } /* while( goi->argc ) */
3565
3566
3567 /* done - we return */
3568 return JIM_OK;
3569 }
3570
3571 /** this is the 'tcl' handler for the target specific command */
3572 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3573 {
3574 Jim_GetOptInfo goi;
3575 jim_wide a,b,c;
3576 int x,y,z;
3577 u8 target_buf[32];
3578 Jim_Nvp *n;
3579 target_t *target;
3580 struct command_context_s *cmd_ctx;
3581 int e;
3582
3583 enum {
3584 TS_CMD_CONFIGURE,
3585 TS_CMD_CGET,
3586
3587 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3588 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3589 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3590 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3591 TS_CMD_EXAMINE,
3592 TS_CMD_POLL,
3593 TS_CMD_RESET,
3594 TS_CMD_HALT,
3595 TS_CMD_WAITSTATE,
3596 TS_CMD_EVENTLIST,
3597 TS_CMD_CURSTATE,
3598 TS_CMD_INVOKE_EVENT,
3599 };
3600
3601 static const Jim_Nvp target_options[] = {
3602 { .name = "configure", .value = TS_CMD_CONFIGURE },
3603 { .name = "cget", .value = TS_CMD_CGET },
3604 { .name = "mww", .value = TS_CMD_MWW },
3605 { .name = "mwh", .value = TS_CMD_MWH },
3606 { .name = "mwb", .value = TS_CMD_MWB },
3607 { .name = "mdw", .value = TS_CMD_MDW },
3608 { .name = "mdh", .value = TS_CMD_MDH },
3609 { .name = "mdb", .value = TS_CMD_MDB },
3610 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3611 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3612 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3613 { .name = "curstate", .value = TS_CMD_CURSTATE },
3614
3615 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3616 { .name = "arp_poll", .value = TS_CMD_POLL },
3617 { .name = "arp_reset", .value = TS_CMD_RESET },
3618 { .name = "arp_halt", .value = TS_CMD_HALT },
3619 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3620 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3621
3622 { .name = NULL, .value = -1 },
3623 };
3624
3625 /* go past the "command" */
3626 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3627
3628 target = Jim_CmdPrivData( goi.interp );
3629 cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3630
3631 /* commands here are in an NVP table */
3632 e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3633 if( e != JIM_OK ){
3634 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3635 return e;
3636 }
3637 /* Assume blank result */
3638 Jim_SetEmptyResult( goi.interp );
3639
3640 switch( n->value ){
3641 case TS_CMD_CONFIGURE:
3642 if( goi.argc < 2 ){
3643 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3644 return JIM_ERR;
3645 }
3646 goi.isconfigure = 1;
3647 return target_configure( &goi, target );
3648 case TS_CMD_CGET:
3649 // some things take params
3650 if( goi.argc < 1 ){
3651 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3652 return JIM_ERR;
3653 }
3654 goi.isconfigure = 0;
3655 return target_configure( &goi, target );
3656 break;
3657 case TS_CMD_MWW:
3658 case TS_CMD_MWH:
3659 case TS_CMD_MWB:
3660 /* argv[0] = cmd
3661 * argv[1] = address
3662 * argv[2] = data
3663 * argv[3] = optional count.
3664 */
3665
3666 if( (goi.argc == 3) || (goi.argc == 4) ){
3667 /* all is well */
3668 } else {
3669 mwx_error:
3670 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3671 return JIM_ERR;
3672 }
3673
3674 e = Jim_GetOpt_Wide( &goi, &a );
3675 if( e != JIM_OK ){
3676 goto mwx_error;
3677 }
3678
3679 e = Jim_GetOpt_Wide( &goi, &b );
3680 if( e != JIM_OK ){
3681 goto mwx_error;
3682 }
3683 if( goi.argc ){
3684 e = Jim_GetOpt_Wide( &goi, &c );
3685 if( e != JIM_OK ){
3686 goto mwx_error;
3687 }
3688 } else {
3689 c = 1;
3690 }
3691
3692 switch( n->value ){
3693 case TS_CMD_MWW:
3694 target_buffer_set_u32( target, target_buf, b );
3695 b = 4;
3696 break;
3697 case TS_CMD_MWH:
3698 target_buffer_set_u16( target, target_buf, b );
3699 b = 2;
3700 break;
3701 case TS_CMD_MWB:
3702 target_buffer_set_u8( target, target_buf, b );
3703 b = 1;
3704 break;
3705 }
3706 for( x = 0 ; x < c ; x++ ){
3707 e = target_write_memory( target, a, b, 1, target_buf );
3708 if( e != ERROR_OK ){
3709 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3710 return JIM_ERR;
3711 }
3712 /* b = width */
3713 a = a + b;
3714 }
3715 return JIM_OK;
3716 break;
3717
3718 /* display */
3719 case TS_CMD_MDW:
3720 case TS_CMD_MDH:
3721 case TS_CMD_MDB:
3722 /* argv[0] = command
3723 * argv[1] = address
3724 * argv[2] = optional count
3725 */
3726 if( (goi.argc == 2) || (goi.argc == 3) ){
3727 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3728 return JIM_ERR;
3729 }
3730 e = Jim_GetOpt_Wide( &goi, &a );
3731 if( e != JIM_OK ){
3732 return JIM_ERR;
3733 }
3734 if( goi.argc ){
3735 e = Jim_GetOpt_Wide( &goi, &c );
3736 if( e != JIM_OK ){
3737 return JIM_ERR;
3738 }
3739 } else {
3740 c = 1;
3741 }
3742 b = 1; /* shut up gcc */
3743 switch( n->value ){
3744 case TS_CMD_MDW:
3745 b = 4;
3746 break;
3747 case TS_CMD_MDH:
3748 b = 2;
3749 break;
3750 case TS_CMD_MDB:
3751 b = 1;
3752 break;
3753 }
3754
3755 /* convert to "bytes" */
3756 c = c * b;
3757 /* count is now in 'BYTES' */
3758 while( c > 0 ){
3759 y = c;
3760 if( y > 16 ){
3761 y = 16;
3762 }
3763 e = target_read_memory( target, a, b, y / b, target_buf );
3764 if( e != ERROR_OK ){
3765 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3766 return JIM_ERR;
3767 }
3768
3769 Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3770 switch( b ){
3771 case 4:
3772 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3773 z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3774 Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3775 }
3776 for( ; (x < 16) ; x += 4 ){
3777 Jim_fprintf( interp, interp->cookie_stdout, " " );
3778 }
3779 break;
3780 case 2:
3781 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3782 z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3783 Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3784 }
3785 for( ; (x < 16) ; x += 2 ){
3786 Jim_fprintf( interp, interp->cookie_stdout, " " );
3787 }
3788 break;
3789 case 1:
3790 default:
3791 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3792 z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3793 Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3794 }
3795 for( ; (x < 16) ; x += 1 ){
3796 Jim_fprintf( interp, interp->cookie_stdout, " " );
3797 }
3798 break;
3799 }
3800 /* ascii-ify the bytes */
3801 for( x = 0 ; x < y ; x++ ){
3802 if( (target_buf[x] >= 0x20) &&
3803 (target_buf[x] <= 0x7e) ){
3804 /* good */
3805 } else {
3806 /* smack it */
3807 target_buf[x] = '.';
3808 }
3809 }
3810 /* space pad */
3811 while( x < 16 ){
3812 target_buf[x] = ' ';
3813 x++;
3814 }
3815 /* terminate */
3816 target_buf[16] = 0;
3817 /* print - with a newline */
3818 Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3819 /* NEXT... */
3820 c -= 16;
3821 a += 16;
3822 }
3823 return JIM_OK;
3824 case TS_CMD_MEM2ARRAY:
3825 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3826 break;
3827 case TS_CMD_ARRAY2MEM:
3828 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3829 break;
3830 case TS_CMD_EXAMINE:
3831 if( goi.argc ){
3832 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3833 return JIM_ERR;
3834 }
3835 if (!target->tap->enabled)
3836 goto err_tap_disabled;
3837 e = target->type->examine( target );
3838 if( e != ERROR_OK ){
3839 Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3840 return JIM_ERR;
3841 }
3842 return JIM_OK;
3843 case TS_CMD_POLL:
3844 if( goi.argc ){
3845 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3846 return JIM_ERR;
3847 }
3848 if (!target->tap->enabled)
3849 goto err_tap_disabled;
3850 if( !(target_was_examined(target)) ){
3851 e = ERROR_TARGET_NOT_EXAMINED;
3852 } else {
3853 e = target->type->poll( target );
3854 }
3855 if( e != ERROR_OK ){
3856 Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3857 return JIM_ERR;
3858 } else {
3859 return JIM_OK;
3860 }
3861 break;
3862 case TS_CMD_RESET:
3863 if( goi.argc != 2 ){
3864 Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3865 return JIM_ERR;
3866 }
3867 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3868 if( e != JIM_OK ){
3869 Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3870 return e;
3871 }
3872 /* the halt or not param */
3873 e = Jim_GetOpt_Wide( &goi, &a);
3874 if( e != JIM_OK ){
3875 return e;
3876 }
3877 if (!target->tap->enabled)
3878 goto err_tap_disabled;
3879 /* determine if we should halt or not. */
3880 target->reset_halt = !!a;
3881 /* When this happens - all workareas are invalid. */
3882 target_free_all_working_areas_restore(target, 0);
3883
3884 /* do the assert */
3885 if( n->value == NVP_ASSERT ){
3886 target->type->assert_reset( target );
3887 } else {
3888 target->type->deassert_reset( target );
3889 }
3890 return JIM_OK;
3891 case TS_CMD_HALT:
3892 if( goi.argc ){
3893 Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3894 return JIM_ERR;
3895 }
3896 if (!target->tap->enabled)
3897 goto err_tap_disabled;
3898 target->type->halt( target );
3899 return JIM_OK;
3900 case TS_CMD_WAITSTATE:
3901 /* params: <name> statename timeoutmsecs */
3902 if( goi.argc != 2 ){
3903 Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3904 return JIM_ERR;
3905 }
3906 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3907 if( e != JIM_OK ){
3908 Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3909 return e;
3910 }
3911 e = Jim_GetOpt_Wide( &goi, &a );
3912 if( e != JIM_OK ){
3913 return e;
3914 }
3915 if (!target->tap->enabled)
3916 goto err_tap_disabled;
3917 e = target_wait_state( target, n->value, a );
3918 if( e != ERROR_OK ){
3919 Jim_SetResult_sprintf( goi.interp,
3920 "target: %s wait %s fails (%d) %s",
3921 target->cmd_name,
3922 n->name,
3923 e, target_strerror_safe(e) );
3924 return JIM_ERR;
3925 } else {
3926 return JIM_OK;
3927 }
3928 case TS_CMD_EVENTLIST:
3929 /* List for human, Events defined for this target.
3930 * scripts/programs should use 'name cget -event NAME'
3931 */
3932 {
3933 target_event_action_t *teap;
3934 teap = target->event_action;
3935 command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3936 target->target_number,
3937 target->cmd_name );
3938 command_print( cmd_ctx, "%-25s | Body", "Event");
3939 command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3940 while( teap ){
3941 command_print( cmd_ctx,
3942 "%-25s | %s",
3943 Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3944 Jim_GetString( teap->body, NULL ) );
3945 teap = teap->next;
3946 }
3947 command_print( cmd_ctx, "***END***");
3948 return JIM_OK;
3949 }
3950 case TS_CMD_CURSTATE:
3951 if( goi.argc != 0 ){
3952 Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3953 return JIM_ERR;
3954 }
3955 Jim_SetResultString( goi.interp,
3956 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3957 return JIM_OK;
3958 case TS_CMD_INVOKE_EVENT:
3959 if( goi.argc != 1 ){
3960 Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3961 return JIM_ERR;
3962 }
3963 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3964 if( e != JIM_OK ){
3965 Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3966 return e;
3967 }
3968 target_handle_event( target, n->value );
3969 return JIM_OK;
3970 }
3971 return JIM_ERR;
3972
3973 err_tap_disabled:
3974 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
3975 return JIM_ERR;
3976 }
3977
3978 static int target_create( Jim_GetOptInfo *goi )
3979 {
3980 Jim_Obj *new_cmd;
3981 Jim_Cmd *cmd;
3982 const char *cp;
3983 char *cp2;
3984 int e;
3985 int x;
3986 target_t *target;
3987 struct command_context_s *cmd_ctx;
3988
3989 cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3990 if( goi->argc < 3 ){
3991 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3992 return JIM_ERR;
3993 }
3994
3995 /* COMMAND */
3996 Jim_GetOpt_Obj( goi, &new_cmd );
3997 /* does this command exist? */
3998 cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3999 if( cmd ){
4000 cp = Jim_GetString( new_cmd, NULL );
4001 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4002 return JIM_ERR;
4003 }
4004
4005 /* TYPE */
4006 e = Jim_GetOpt_String( goi, &cp2, NULL );
4007 cp = cp2;
4008 /* now does target type exist */
4009 for( x = 0 ; target_types[x] ; x++ ){
4010 if( 0 == strcmp( cp, target_types[x]->name ) ){
4011 /* found */
4012 break;
4013 }
4014 }
4015 if( target_types[x] == NULL ){
4016 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
4017 for( x = 0 ; target_types[x] ; x++ ){
4018 if( target_types[x+1] ){
4019 Jim_AppendStrings( goi->interp,
4020 Jim_GetResult(goi->interp),
4021 target_types[x]->name,
4022 ", ", NULL);
4023 } else {
4024 Jim_AppendStrings( goi->interp,
4025 Jim_GetResult(goi->interp),
4026 " or ",
4027 target_types[x]->name,NULL );
4028 }
4029 }
4030 return JIM_ERR;
4031 }
4032
4033 /* Create it */
4034 target = calloc(1,sizeof(target_t));
4035 /* set target number */
4036 target->target_number = new_target_number();
4037
4038 /* allocate memory for each unique target type */
4039 target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4040
4041 memcpy( target->type, target_types[x], sizeof(target_type_t));
4042
4043 /* will be set by "-endian" */
4044 target->endianness = TARGET_ENDIAN_UNKNOWN;
4045
4046 target->working_area = 0x0;
4047 target->working_area_size = 0x0;
4048 target->working_areas = NULL;
4049 target->backup_working_area = 0;
4050
4051 target->state = TARGET_UNKNOWN;
4052 target->debug_reason = DBG_REASON_UNDEFINED;
4053 target->reg_cache = NULL;
4054 target->breakpoints = NULL;
4055 target->watchpoints = NULL;
4056 target->next = NULL;
4057 target->arch_info = NULL;
4058
4059 target->display = 1;
4060
4061 /* initialize trace information */
4062 target->trace_info = malloc(sizeof(trace_t));
4063 target->trace_info->num_trace_points = 0;
4064 target->trace_info->trace_points_size = 0;
4065 target->trace_info->trace_points = NULL;
4066 target->trace_info->trace_history_size = 0;
4067 target->trace_info->trace_history = NULL;
4068 target->trace_info->trace_history_pos = 0;
4069 target->trace_info->trace_history_overflowed = 0;
4070
4071 target->dbgmsg = NULL;
4072 target->dbg_msg_enabled = 0;
4073
4074 target->endianness = TARGET_ENDIAN_UNKNOWN;
4075
4076 /* Do the rest as "configure" options */
4077 goi->isconfigure = 1;
4078 e = target_configure( goi, target);
4079
4080 if (target->tap == NULL)
4081 {
4082 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4083 e=JIM_ERR;
4084 }
4085
4086 if( e != JIM_OK ){
4087 free( target->type );
4088 free( target );
4089 return e;
4090 }
4091
4092 if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4093 /* default endian to little if not specified */
4094 target->endianness = TARGET_LITTLE_ENDIAN;
4095 }
4096
4097 /* incase variant is not set */
4098 if (!target->variant)
4099 target->variant = strdup("");
4100
4101 /* create the target specific commands */
4102 if( target->type->register_commands ){
4103 (*(target->type->register_commands))( cmd_ctx );
4104 }
4105 if( target->type->target_create ){
4106 (*(target->type->target_create))( target, goi->interp );
4107 }
4108
4109 /* append to end of list */
4110 {
4111 target_t **tpp;
4112 tpp = &(all_targets);
4113 while( *tpp ){
4114 tpp = &( (*tpp)->next );
4115 }
4116 *tpp = target;
4117 }
4118
4119 cp = Jim_GetString( new_cmd, NULL );
4120 target->cmd_name = strdup(cp);
4121
4122 /* now - create the new target name command */
4123 e = Jim_CreateCommand( goi->interp,
4124 /* name */
4125 cp,
4126 tcl_target_func, /* C function */
4127 target, /* private data */
4128 NULL ); /* no del proc */
4129
4130 return e;
4131 }
4132
4133 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4134 {
4135 int x,r,e;
4136 jim_wide w;
4137 struct command_context_s *cmd_ctx;
4138 target_t *target;
4139 Jim_GetOptInfo goi;
4140 enum tcmd {
4141 /* TG = target generic */
4142 TG_CMD_CREATE,
4143 TG_CMD_TYPES,
4144 TG_CMD_NAMES,
4145 TG_CMD_CURRENT,
4146 TG_CMD_NUMBER,
4147 TG_CMD_COUNT,
4148 };
4149 const char *target_cmds[] = {
4150 "create", "types", "names", "current", "number",
4151 "count",
4152 NULL /* terminate */
4153 };
4154
4155 LOG_DEBUG("Target command params:");
4156 LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4157
4158 cmd_ctx = Jim_GetAssocData( interp, "context" );
4159
4160 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4161
4162 if( goi.argc == 0 ){
4163 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4164 return JIM_ERR;
4165 }
4166
4167 /* Jim_GetOpt_Debug( &goi ); */
4168 r = Jim_GetOpt_Enum( &goi, target_cmds, &x );
4169 if( r != JIM_OK ){
4170 return r;
4171 }
4172
4173 switch(x){
4174 default:
4175 Jim_Panic(goi.interp,"Why am I here?");
4176 return JIM_ERR;
4177 case TG_CMD_CURRENT:
4178 if( goi.argc != 0 ){
4179 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4180 return JIM_ERR;
4181 }
4182 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4183 return JIM_OK;
4184 case TG_CMD_TYPES:
4185 if( goi.argc != 0 ){
4186 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4187 return JIM_ERR;
4188 }
4189 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4190 for( x = 0 ; target_types[x] ; x++ ){
4191 Jim_ListAppendElement( goi.interp,
4192 Jim_GetResult(goi.interp),
4193 Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4194 }
4195 return JIM_OK;
4196 case TG_CMD_NAMES:
4197 if( goi.argc != 0 ){
4198 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4199 return JIM_ERR;
4200 }
4201 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4202 target = all_targets;
4203 while( target ){
4204 Jim_ListAppendElement( goi.interp,
4205 Jim_GetResult(goi.interp),
4206 Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4207 target = target->next;
4208 }
4209 return JIM_OK;
4210 case TG_CMD_CREATE:
4211 if( goi.argc < 3 ){
4212 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name ... config options ...");
4213 return JIM_ERR;
4214 }
4215 return target_create( &goi );
4216 break;
4217 case TG_CMD_NUMBER:
4218 if( goi.argc != 1 ){
4219 Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4220 return JIM_ERR;
4221 }
4222 e = Jim_GetOpt_Wide( &goi, &w );
4223 if( e != JIM_OK ){
4224 return JIM_ERR;
4225 }
4226 {
4227 target_t *t;
4228 t = get_target_by_num(w);
4229 if( t == NULL ){
4230 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4231 return JIM_ERR;
4232 }
4233 Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4234 return JIM_OK;
4235 }
4236 case TG_CMD_COUNT:
4237 if( goi.argc != 0 ){
4238 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4239 return JIM_ERR;
4240 }
4241 Jim_SetResult( goi.interp,
4242 Jim_NewIntObj( goi.interp, max_target_number()));
4243 return JIM_OK;
4244 }
4245
4246 return JIM_ERR;
4247 }
4248
4249
4250 struct FastLoad
4251 {
4252 u32 address;
4253 u8 *data;
4254 int length;
4255
4256 };
4257
4258 static int fastload_num;
4259 static struct FastLoad *fastload;
4260
4261 static void free_fastload(void)
4262 {
4263 if (fastload!=NULL)
4264 {
4265 int i;
4266 for (i=0; i<fastload_num; i++)
4267 {
4268 if (fastload[i].data)
4269 free(fastload[i].data);
4270 }
4271 free(fastload);
4272 fastload=NULL;
4273 }
4274 }
4275
4276
4277
4278
4279 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4280 {
4281 u8 *buffer;
4282 u32 buf_cnt;
4283 u32 image_size;
4284 u32 min_address=0;
4285 u32 max_address=0xffffffff;
4286 int i;
4287 int retval;
4288
4289 image_t image;
4290
4291 duration_t duration;
4292 char *duration_text;
4293
4294 if ((argc < 1)||(argc > 5))
4295 {
4296 return ERROR_COMMAND_SYNTAX_ERROR;
4297 }
4298
4299 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4300 if (argc >= 2)
4301 {
4302 image.base_address_set = 1;
4303 image.base_address = strtoul(args[1], NULL, 0);
4304 }
4305 else
4306 {
4307 image.base_address_set = 0;
4308 }
4309
4310
4311 image.start_address_set = 0;
4312
4313 if (argc>=4)
4314 {
4315 min_address=strtoul(args[3], NULL, 0);
4316 }
4317 if (argc>=5)
4318 {
4319 max_address=strtoul(args[4], NULL, 0)+min_address;
4320 }
4321
4322 if (min_address>max_address)
4323 {
4324 return ERROR_COMMAND_SYNTAX_ERROR;
4325 }
4326
4327 duration_start_measure(&duration);
4328
4329 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4330 {
4331 return ERROR_OK;
4332 }
4333
4334 image_size = 0x0;
4335 retval = ERROR_OK;
4336 fastload_num=image.num_sections;
4337 fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4338 if (fastload==NULL)
4339 {
4340 image_close(&image);
4341 return ERROR_FAIL;
4342 }
4343 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4344 for (i = 0; i < image.num_sections; i++)
4345 {
4346 buffer = malloc(image.sections[i].size);
4347 if (buffer == NULL)
4348 {
4349 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4350 break;
4351 }
4352
4353 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4354 {
4355 free(buffer);
4356 break;
4357 }
4358
4359 u32 offset=0;
4360 u32 length=buf_cnt;
4361
4362
4363 /* DANGER!!! beware of unsigned comparision here!!! */
4364
4365 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4366 (image.sections[i].base_address<max_address))
4367 {
4368 if (image.sections[i].base_address<min_address)
4369 {
4370 /* clip addresses below */
4371 offset+=min_address-image.sections[i].base_address;
4372 length-=offset;
4373 }
4374
4375 if (image.sections[i].base_address+buf_cnt>max_address)
4376 {
4377 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4378 }
4379
4380 fastload[i].address=image.sections[i].base_address+offset;
4381 fastload[i].data=malloc(length);
4382 if (fastload[i].data==NULL)
4383 {
4384 free(buffer);
4385 break;
4386 }
4387 memcpy(fastload[i].data, buffer+offset, length);
4388 fastload[i].length=length;
4389
4390 image_size += length;
4391 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4392 }
4393
4394 free(buffer);
4395 }
4396
4397 duration_stop_measure(&duration, &duration_text);
4398 if (retval==ERROR_OK)
4399 {
4400 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4401 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4402 }
4403 free(duration_text);
4404
4405 image_close(&image);
4406
4407 if (retval!=ERROR_OK)
4408 {
4409 free_fastload();
4410 }
4411
4412 return retval;
4413 }
4414
4415 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4416 {
4417 if (argc>0)
4418 return ERROR_COMMAND_SYNTAX_ERROR;
4419 if (fastload==NULL)
4420 {
4421 LOG_ERROR("No image in memory");
4422 return ERROR_FAIL;
4423 }
4424 int i;
4425 int ms=timeval_ms();
4426 int size=0;
4427 int retval=ERROR_OK;
4428 for (i=0; i<fastload_num;i++)
4429 {
4430 target_t *target = get_current_target(cmd_ctx);
4431 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4432 if (retval==ERROR_OK)
4433 {
4434 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4435 }
4436 size+=fastload[i].length;
4437 }
4438 int after=timeval_ms();
4439 command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4440 return retval;
4441 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)