Improve handle_mw_command argument handling:
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95 &arm7tdmi_target,
96 &arm9tdmi_target,
97 &arm920t_target,
98 &arm720t_target,
99 &arm966e_target,
100 &arm926ejs_target,
101 &feroceon_target,
102 &xscale_target,
103 &cortexm3_target,
104 &cortexa8_target,
105 &arm11_target,
106 &mips_m4k_target,
107 &avr_target,
108 NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116 { .name = "assert", NVP_ASSERT },
117 { .name = "deassert", NVP_DEASSERT },
118 { .name = "T", NVP_ASSERT },
119 { .name = "F", NVP_DEASSERT },
120 { .name = "t", NVP_ASSERT },
121 { .name = "f", NVP_DEASSERT },
122 { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
132 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
135 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137 { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142 const Jim_Nvp *n;
143
144 n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145 if( n->name == NULL ){
146 return "unknown";
147 } else {
148 return n->name;
149 }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
155
156 { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157 { .value = TARGET_EVENT_HALTED, .name = "halted" },
158 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165 /* historical name */
166
167 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
170 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
171 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
172 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
174 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
175 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
176 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
177 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
191
192 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
194
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
197 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
198
199 { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203 { .name = "unknown", .value = TARGET_UNKNOWN },
204 { .name = "running", .value = TARGET_RUNNING },
205 { .name = "halted", .value = TARGET_HALTED },
206 { .name = "reset", .value = TARGET_RESET },
207 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208 { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
213 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
214 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
215 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
217 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
218 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
219 { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223 { .name = "big", .value = TARGET_BIG_ENDIAN },
224 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225 { .name = "be", .value = TARGET_BIG_ENDIAN },
226 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
227 { .name = NULL, .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231 { .name = "unknown", .value = RESET_UNKNOWN },
232 { .name = "run" , .value = RESET_RUN },
233 { .name = "halt" , .value = RESET_HALT },
234 { .name = "init" , .value = RESET_INIT },
235 { .name = NULL , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240 target_t *t;
241 int x;
242
243 x = -1;
244 t = all_targets;
245 while( t ){
246 if( x < t->target_number ){
247 x = (t->target_number)+1;
248 }
249 t = t->next;
250 }
251 return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257 target_t *t;
258 int x;
259
260 /* number is 0 based */
261 x = -1;
262 t = all_targets;
263 while(t){
264 if( x < t->target_number ){
265 x = t->target_number;
266 }
267 t = t->next;
268 }
269 return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277 if (target->endianness == TARGET_LITTLE_ENDIAN)
278 return le_to_h_u32(buffer);
279 else
280 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286 if (target->endianness == TARGET_LITTLE_ENDIAN)
287 return le_to_h_u16(buffer);
288 else
289 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295 return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301 if (target->endianness == TARGET_LITTLE_ENDIAN)
302 h_u32_to_le(buffer, value);
303 else
304 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310 if (target->endianness == TARGET_LITTLE_ENDIAN)
311 h_u16_to_le(buffer, value);
312 else
313 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319 *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325 target_t *target;
326
327 /* try as tcltarget name */
328 for (target = all_targets; target; target = target->next) {
329 if (target->cmd_name == NULL)
330 continue;
331 if (strcmp(id, target->cmd_name) == 0)
332 return target;
333 }
334
335 /* no match, try as number */
336 unsigned num;
337 if (parse_uint(id, &num) != ERROR_OK)
338 return NULL;
339
340 for (target = all_targets; target; target = target->next) {
341 if (target->target_number == (int)num)
342 return target;
343 }
344
345 return NULL;
346 }
347
348 /* returns a pointer to the n-th configured target */
349 static target_t *get_target_by_num(int num)
350 {
351 target_t *target = all_targets;
352
353 while (target){
354 if( target->target_number == num ){
355 return target;
356 }
357 target = target->next;
358 }
359
360 return NULL;
361 }
362
363 int get_num_by_target(target_t *query_target)
364 {
365 return query_target->target_number;
366 }
367
368 target_t* get_current_target(command_context_t *cmd_ctx)
369 {
370 target_t *target = get_target_by_num(cmd_ctx->current_target);
371
372 if (target == NULL)
373 {
374 LOG_ERROR("BUG: current_target out of bounds");
375 exit(-1);
376 }
377
378 return target;
379 }
380
381 int target_poll(struct target_s *target)
382 {
383 /* We can't poll until after examine */
384 if (!target_was_examined(target))
385 {
386 /* Fail silently lest we pollute the log */
387 return ERROR_FAIL;
388 }
389 return target->type->poll(target);
390 }
391
392 int target_halt(struct target_s *target)
393 {
394 /* We can't poll until after examine */
395 if (!target_was_examined(target))
396 {
397 LOG_ERROR("Target not examined yet");
398 return ERROR_FAIL;
399 }
400 return target->type->halt(target);
401 }
402
403 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
404 {
405 int retval;
406
407 /* We can't poll until after examine */
408 if (!target_was_examined(target))
409 {
410 LOG_ERROR("Target not examined yet");
411 return ERROR_FAIL;
412 }
413
414 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
415 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
416 * the application.
417 */
418 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
419 return retval;
420
421 return retval;
422 }
423
424 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
425 {
426 char buf[100];
427 int retval;
428 Jim_Nvp *n;
429 n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
430 if( n->name == NULL ){
431 LOG_ERROR("invalid reset mode");
432 return ERROR_FAIL;
433 }
434
435 /* disable polling during reset to make reset event scripts
436 * more predictable, i.e. dr/irscan & pathmove in events will
437 * not have JTAG operations injected into the middle of a sequence.
438 */
439 int save_poll = target_continous_poll;
440 target_continous_poll = 0;
441
442 sprintf( buf, "ocd_process_reset %s", n->name );
443 retval = Jim_Eval( interp, buf );
444
445 target_continous_poll = save_poll;
446
447 if(retval != JIM_OK) {
448 Jim_PrintErrorMessage(interp);
449 return ERROR_FAIL;
450 }
451
452 /* We want any events to be processed before the prompt */
453 retval = target_call_timer_callbacks_now();
454
455 return retval;
456 }
457
458 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
459 {
460 *physical = virtual;
461 return ERROR_OK;
462 }
463
464 static int default_mmu(struct target_s *target, int *enabled)
465 {
466 *enabled = 0;
467 return ERROR_OK;
468 }
469
470 static int default_examine(struct target_s *target)
471 {
472 target_set_examined(target);
473 return ERROR_OK;
474 }
475
476 int target_examine_one(struct target_s *target)
477 {
478 return target->type->examine(target);
479 }
480
481 /* Targets that correctly implement init+examine, i.e.
482 * no communication with target during init:
483 *
484 * XScale
485 */
486 int target_examine(void)
487 {
488 int retval = ERROR_OK;
489 target_t *target;
490
491 for (target = all_targets; target; target = target->next)
492 {
493 if (!target->tap->enabled)
494 continue;
495 if ((retval = target_examine_one(target)) != ERROR_OK)
496 return retval;
497 }
498 return retval;
499 }
500 const char *target_get_name(struct target_s *target)
501 {
502 return target->type->name;
503 }
504
505 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
506 {
507 if (!target_was_examined(target))
508 {
509 LOG_ERROR("Target not examined yet");
510 return ERROR_FAIL;
511 }
512 return target->type->write_memory_imp(target, address, size, count, buffer);
513 }
514
515 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
516 {
517 if (!target_was_examined(target))
518 {
519 LOG_ERROR("Target not examined yet");
520 return ERROR_FAIL;
521 }
522 return target->type->read_memory_imp(target, address, size, count, buffer);
523 }
524
525 static int target_soft_reset_halt_imp(struct target_s *target)
526 {
527 if (!target_was_examined(target))
528 {
529 LOG_ERROR("Target not examined yet");
530 return ERROR_FAIL;
531 }
532 return target->type->soft_reset_halt_imp(target);
533 }
534
535 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
536 {
537 if (!target_was_examined(target))
538 {
539 LOG_ERROR("Target not examined yet");
540 return ERROR_FAIL;
541 }
542 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 }
544
545 int target_read_memory(struct target_s *target,
546 u32 address, u32 size, u32 count, u8 *buffer)
547 {
548 return target->type->read_memory(target, address, size, count, buffer);
549 }
550
551 int target_write_memory(struct target_s *target,
552 u32 address, u32 size, u32 count, u8 *buffer)
553 {
554 return target->type->write_memory(target, address, size, count, buffer);
555 }
556 int target_bulk_write_memory(struct target_s *target,
557 u32 address, u32 count, u8 *buffer)
558 {
559 return target->type->bulk_write_memory(target, address, count, buffer);
560 }
561
562 int target_add_breakpoint(struct target_s *target,
563 struct breakpoint_s *breakpoint)
564 {
565 return target->type->add_breakpoint(target, breakpoint);
566 }
567 int target_remove_breakpoint(struct target_s *target,
568 struct breakpoint_s *breakpoint)
569 {
570 return target->type->remove_breakpoint(target, breakpoint);
571 }
572
573 int target_add_watchpoint(struct target_s *target,
574 struct watchpoint_s *watchpoint)
575 {
576 return target->type->add_watchpoint(target, watchpoint);
577 }
578 int target_remove_watchpoint(struct target_s *target,
579 struct watchpoint_s *watchpoint)
580 {
581 return target->type->remove_watchpoint(target, watchpoint);
582 }
583
584 int target_get_gdb_reg_list(struct target_s *target,
585 struct reg_s **reg_list[], int *reg_list_size)
586 {
587 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
588 }
589 int target_step(struct target_s *target,
590 int current, u32 address, int handle_breakpoints)
591 {
592 return target->type->step(target, current, address, handle_breakpoints);
593 }
594
595
596 int target_run_algorithm(struct target_s *target,
597 int num_mem_params, mem_param_t *mem_params,
598 int num_reg_params, reg_param_t *reg_param,
599 u32 entry_point, u32 exit_point,
600 int timeout_ms, void *arch_info)
601 {
602 return target->type->run_algorithm(target,
603 num_mem_params, mem_params, num_reg_params, reg_param,
604 entry_point, exit_point, timeout_ms, arch_info);
605 }
606
607 /// @returns @c true if the target has been examined.
608 bool target_was_examined(struct target_s *target)
609 {
610 return target->type->examined;
611 }
612 /// Sets the @c examined flag for the given target.
613 void target_set_examined(struct target_s *target)
614 {
615 target->type->examined = true;
616 }
617 // Reset the @c examined flag for the given target.
618 void target_reset_examined(struct target_s *target)
619 {
620 target->type->examined = false;
621 }
622
623
624 int target_init(struct command_context_s *cmd_ctx)
625 {
626 target_t *target = all_targets;
627 int retval;
628
629 while (target)
630 {
631 target_reset_examined(target);
632 if (target->type->examine == NULL)
633 {
634 target->type->examine = default_examine;
635 }
636
637 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
638 {
639 LOG_ERROR("target '%s' init failed", target_get_name(target));
640 return retval;
641 }
642
643 /* Set up default functions if none are provided by target */
644 if (target->type->virt2phys == NULL)
645 {
646 target->type->virt2phys = default_virt2phys;
647 }
648 target->type->virt2phys = default_virt2phys;
649 /* a non-invasive way(in terms of patches) to add some code that
650 * runs before the type->write/read_memory implementation
651 */
652 target->type->write_memory_imp = target->type->write_memory;
653 target->type->write_memory = target_write_memory_imp;
654 target->type->read_memory_imp = target->type->read_memory;
655 target->type->read_memory = target_read_memory_imp;
656 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
657 target->type->soft_reset_halt = target_soft_reset_halt_imp;
658 target->type->run_algorithm_imp = target->type->run_algorithm;
659 target->type->run_algorithm = target_run_algorithm_imp;
660
661 if (target->type->mmu == NULL)
662 {
663 target->type->mmu = default_mmu;
664 }
665 target = target->next;
666 }
667
668 if (all_targets)
669 {
670 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
671 return retval;
672 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
673 return retval;
674 }
675
676 return ERROR_OK;
677 }
678
679 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
680 {
681 target_event_callback_t **callbacks_p = &target_event_callbacks;
682
683 if (callback == NULL)
684 {
685 return ERROR_INVALID_ARGUMENTS;
686 }
687
688 if (*callbacks_p)
689 {
690 while ((*callbacks_p)->next)
691 callbacks_p = &((*callbacks_p)->next);
692 callbacks_p = &((*callbacks_p)->next);
693 }
694
695 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
696 (*callbacks_p)->callback = callback;
697 (*callbacks_p)->priv = priv;
698 (*callbacks_p)->next = NULL;
699
700 return ERROR_OK;
701 }
702
703 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
704 {
705 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
706 struct timeval now;
707
708 if (callback == NULL)
709 {
710 return ERROR_INVALID_ARGUMENTS;
711 }
712
713 if (*callbacks_p)
714 {
715 while ((*callbacks_p)->next)
716 callbacks_p = &((*callbacks_p)->next);
717 callbacks_p = &((*callbacks_p)->next);
718 }
719
720 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
721 (*callbacks_p)->callback = callback;
722 (*callbacks_p)->periodic = periodic;
723 (*callbacks_p)->time_ms = time_ms;
724
725 gettimeofday(&now, NULL);
726 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
727 time_ms -= (time_ms % 1000);
728 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
729 if ((*callbacks_p)->when.tv_usec > 1000000)
730 {
731 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
732 (*callbacks_p)->when.tv_sec += 1;
733 }
734
735 (*callbacks_p)->priv = priv;
736 (*callbacks_p)->next = NULL;
737
738 return ERROR_OK;
739 }
740
741 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
742 {
743 target_event_callback_t **p = &target_event_callbacks;
744 target_event_callback_t *c = target_event_callbacks;
745
746 if (callback == NULL)
747 {
748 return ERROR_INVALID_ARGUMENTS;
749 }
750
751 while (c)
752 {
753 target_event_callback_t *next = c->next;
754 if ((c->callback == callback) && (c->priv == priv))
755 {
756 *p = next;
757 free(c);
758 return ERROR_OK;
759 }
760 else
761 p = &(c->next);
762 c = next;
763 }
764
765 return ERROR_OK;
766 }
767
768 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
769 {
770 target_timer_callback_t **p = &target_timer_callbacks;
771 target_timer_callback_t *c = target_timer_callbacks;
772
773 if (callback == NULL)
774 {
775 return ERROR_INVALID_ARGUMENTS;
776 }
777
778 while (c)
779 {
780 target_timer_callback_t *next = c->next;
781 if ((c->callback == callback) && (c->priv == priv))
782 {
783 *p = next;
784 free(c);
785 return ERROR_OK;
786 }
787 else
788 p = &(c->next);
789 c = next;
790 }
791
792 return ERROR_OK;
793 }
794
795 int target_call_event_callbacks(target_t *target, enum target_event event)
796 {
797 target_event_callback_t *callback = target_event_callbacks;
798 target_event_callback_t *next_callback;
799
800 if (event == TARGET_EVENT_HALTED)
801 {
802 /* execute early halted first */
803 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
804 }
805
806 LOG_DEBUG("target event %i (%s)",
807 event,
808 Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
809
810 target_handle_event( target, event );
811
812 while (callback)
813 {
814 next_callback = callback->next;
815 callback->callback(target, event, callback->priv);
816 callback = next_callback;
817 }
818
819 return ERROR_OK;
820 }
821
822 static int target_timer_callback_periodic_restart(
823 target_timer_callback_t *cb, struct timeval *now)
824 {
825 int time_ms = cb->time_ms;
826 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
827 time_ms -= (time_ms % 1000);
828 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
829 if (cb->when.tv_usec > 1000000)
830 {
831 cb->when.tv_usec = cb->when.tv_usec - 1000000;
832 cb->when.tv_sec += 1;
833 }
834 return ERROR_OK;
835 }
836
837 static int target_call_timer_callback(target_timer_callback_t *cb,
838 struct timeval *now)
839 {
840 cb->callback(cb->priv);
841
842 if (cb->periodic)
843 return target_timer_callback_periodic_restart(cb, now);
844
845 return target_unregister_timer_callback(cb->callback, cb->priv);
846 }
847
848 static int target_call_timer_callbacks_check_time(int checktime)
849 {
850 keep_alive();
851
852 struct timeval now;
853 gettimeofday(&now, NULL);
854
855 target_timer_callback_t *callback = target_timer_callbacks;
856 while (callback)
857 {
858 // cleaning up may unregister and free this callback
859 target_timer_callback_t *next_callback = callback->next;
860
861 bool call_it = callback->callback &&
862 ((!checktime && callback->periodic) ||
863 now.tv_sec > callback->when.tv_sec ||
864 (now.tv_sec == callback->when.tv_sec &&
865 now.tv_usec >= callback->when.tv_usec));
866
867 if (call_it)
868 {
869 int retval = target_call_timer_callback(callback, &now);
870 if (retval != ERROR_OK)
871 return retval;
872 }
873
874 callback = next_callback;
875 }
876
877 return ERROR_OK;
878 }
879
880 int target_call_timer_callbacks(void)
881 {
882 return target_call_timer_callbacks_check_time(1);
883 }
884
885 /* invoke periodic callbacks immediately */
886 int target_call_timer_callbacks_now(void)
887 {
888 return target_call_timer_callbacks_check_time(0);
889 }
890
891 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
892 {
893 working_area_t *c = target->working_areas;
894 working_area_t *new_wa = NULL;
895
896 /* Reevaluate working area address based on MMU state*/
897 if (target->working_areas == NULL)
898 {
899 int retval;
900 int enabled;
901 retval = target->type->mmu(target, &enabled);
902 if (retval != ERROR_OK)
903 {
904 return retval;
905 }
906 if (enabled)
907 {
908 target->working_area = target->working_area_virt;
909 }
910 else
911 {
912 target->working_area = target->working_area_phys;
913 }
914 }
915
916 /* only allocate multiples of 4 byte */
917 if (size % 4)
918 {
919 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
920 size = CEIL(size, 4);
921 }
922
923 /* see if there's already a matching working area */
924 while (c)
925 {
926 if ((c->free) && (c->size == size))
927 {
928 new_wa = c;
929 break;
930 }
931 c = c->next;
932 }
933
934 /* if not, allocate a new one */
935 if (!new_wa)
936 {
937 working_area_t **p = &target->working_areas;
938 u32 first_free = target->working_area;
939 u32 free_size = target->working_area_size;
940
941 LOG_DEBUG("allocating new working area");
942
943 c = target->working_areas;
944 while (c)
945 {
946 first_free += c->size;
947 free_size -= c->size;
948 p = &c->next;
949 c = c->next;
950 }
951
952 if (free_size < size)
953 {
954 LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
955 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
956 }
957
958 new_wa = malloc(sizeof(working_area_t));
959 new_wa->next = NULL;
960 new_wa->size = size;
961 new_wa->address = first_free;
962
963 if (target->backup_working_area)
964 {
965 int retval;
966 new_wa->backup = malloc(new_wa->size);
967 if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
968 {
969 free(new_wa->backup);
970 free(new_wa);
971 return retval;
972 }
973 }
974 else
975 {
976 new_wa->backup = NULL;
977 }
978
979 /* put new entry in list */
980 *p = new_wa;
981 }
982
983 /* mark as used, and return the new (reused) area */
984 new_wa->free = 0;
985 *area = new_wa;
986
987 /* user pointer */
988 new_wa->user = area;
989
990 return ERROR_OK;
991 }
992
993 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
994 {
995 if (area->free)
996 return ERROR_OK;
997
998 if (restore&&target->backup_working_area)
999 {
1000 int retval;
1001 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1002 return retval;
1003 }
1004
1005 area->free = 1;
1006
1007 /* mark user pointer invalid */
1008 *area->user = NULL;
1009 area->user = NULL;
1010
1011 return ERROR_OK;
1012 }
1013
1014 int target_free_working_area(struct target_s *target, working_area_t *area)
1015 {
1016 return target_free_working_area_restore(target, area, 1);
1017 }
1018
1019 /* free resources and restore memory, if restoring memory fails,
1020 * free up resources anyway
1021 */
1022 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1023 {
1024 working_area_t *c = target->working_areas;
1025
1026 while (c)
1027 {
1028 working_area_t *next = c->next;
1029 target_free_working_area_restore(target, c, restore);
1030
1031 if (c->backup)
1032 free(c->backup);
1033
1034 free(c);
1035
1036 c = next;
1037 }
1038
1039 target->working_areas = NULL;
1040 }
1041
1042 void target_free_all_working_areas(struct target_s *target)
1043 {
1044 target_free_all_working_areas_restore(target, 1);
1045 }
1046
1047 int target_register_commands(struct command_context_s *cmd_ctx)
1048 {
1049
1050 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1051
1052
1053
1054
1055 register_jim(cmd_ctx, "target", jim_target, "configure target" );
1056
1057 return ERROR_OK;
1058 }
1059
1060 int target_arch_state(struct target_s *target)
1061 {
1062 int retval;
1063 if (target==NULL)
1064 {
1065 LOG_USER("No target has been configured");
1066 return ERROR_OK;
1067 }
1068
1069 LOG_USER("target state: %s",
1070 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1071
1072 if (target->state!=TARGET_HALTED)
1073 return ERROR_OK;
1074
1075 retval=target->type->arch_state(target);
1076 return retval;
1077 }
1078
1079 /* Single aligned words are guaranteed to use 16 or 32 bit access
1080 * mode respectively, otherwise data is handled as quickly as
1081 * possible
1082 */
1083 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1084 {
1085 int retval;
1086 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1087
1088 if (!target_was_examined(target))
1089 {
1090 LOG_ERROR("Target not examined yet");
1091 return ERROR_FAIL;
1092 }
1093
1094 if (size == 0) {
1095 return ERROR_OK;
1096 }
1097
1098 if ((address + size - 1) < address)
1099 {
1100 /* GDB can request this when e.g. PC is 0xfffffffc*/
1101 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1102 return ERROR_FAIL;
1103 }
1104
1105 if (((address % 2) == 0) && (size == 2))
1106 {
1107 return target_write_memory(target, address, 2, 1, buffer);
1108 }
1109
1110 /* handle unaligned head bytes */
1111 if (address % 4)
1112 {
1113 u32 unaligned = 4 - (address % 4);
1114
1115 if (unaligned > size)
1116 unaligned = size;
1117
1118 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1119 return retval;
1120
1121 buffer += unaligned;
1122 address += unaligned;
1123 size -= unaligned;
1124 }
1125
1126 /* handle aligned words */
1127 if (size >= 4)
1128 {
1129 int aligned = size - (size % 4);
1130
1131 /* use bulk writes above a certain limit. This may have to be changed */
1132 if (aligned > 128)
1133 {
1134 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1135 return retval;
1136 }
1137 else
1138 {
1139 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1140 return retval;
1141 }
1142
1143 buffer += aligned;
1144 address += aligned;
1145 size -= aligned;
1146 }
1147
1148 /* handle tail writes of less than 4 bytes */
1149 if (size > 0)
1150 {
1151 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1152 return retval;
1153 }
1154
1155 return ERROR_OK;
1156 }
1157
1158 /* Single aligned words are guaranteed to use 16 or 32 bit access
1159 * mode respectively, otherwise data is handled as quickly as
1160 * possible
1161 */
1162 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1163 {
1164 int retval;
1165 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1166
1167 if (!target_was_examined(target))
1168 {
1169 LOG_ERROR("Target not examined yet");
1170 return ERROR_FAIL;
1171 }
1172
1173 if (size == 0) {
1174 return ERROR_OK;
1175 }
1176
1177 if ((address + size - 1) < address)
1178 {
1179 /* GDB can request this when e.g. PC is 0xfffffffc*/
1180 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1181 return ERROR_FAIL;
1182 }
1183
1184 if (((address % 2) == 0) && (size == 2))
1185 {
1186 return target_read_memory(target, address, 2, 1, buffer);
1187 }
1188
1189 /* handle unaligned head bytes */
1190 if (address % 4)
1191 {
1192 u32 unaligned = 4 - (address % 4);
1193
1194 if (unaligned > size)
1195 unaligned = size;
1196
1197 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1198 return retval;
1199
1200 buffer += unaligned;
1201 address += unaligned;
1202 size -= unaligned;
1203 }
1204
1205 /* handle aligned words */
1206 if (size >= 4)
1207 {
1208 int aligned = size - (size % 4);
1209
1210 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1211 return retval;
1212
1213 buffer += aligned;
1214 address += aligned;
1215 size -= aligned;
1216 }
1217
1218 /* handle tail writes of less than 4 bytes */
1219 if (size > 0)
1220 {
1221 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1222 return retval;
1223 }
1224
1225 return ERROR_OK;
1226 }
1227
1228 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1229 {
1230 u8 *buffer;
1231 int retval;
1232 u32 i;
1233 u32 checksum = 0;
1234 if (!target_was_examined(target))
1235 {
1236 LOG_ERROR("Target not examined yet");
1237 return ERROR_FAIL;
1238 }
1239
1240 if ((retval = target->type->checksum_memory(target, address,
1241 size, &checksum)) != ERROR_OK)
1242 {
1243 buffer = malloc(size);
1244 if (buffer == NULL)
1245 {
1246 LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1247 return ERROR_INVALID_ARGUMENTS;
1248 }
1249 retval = target_read_buffer(target, address, size, buffer);
1250 if (retval != ERROR_OK)
1251 {
1252 free(buffer);
1253 return retval;
1254 }
1255
1256 /* convert to target endianess */
1257 for (i = 0; i < (size/sizeof(u32)); i++)
1258 {
1259 u32 target_data;
1260 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1261 target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1262 }
1263
1264 retval = image_calculate_checksum( buffer, size, &checksum );
1265 free(buffer);
1266 }
1267
1268 *crc = checksum;
1269
1270 return retval;
1271 }
1272
1273 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1274 {
1275 int retval;
1276 if (!target_was_examined(target))
1277 {
1278 LOG_ERROR("Target not examined yet");
1279 return ERROR_FAIL;
1280 }
1281
1282 if (target->type->blank_check_memory == 0)
1283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284
1285 retval = target->type->blank_check_memory(target, address, size, blank);
1286
1287 return retval;
1288 }
1289
1290 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1291 {
1292 u8 value_buf[4];
1293 if (!target_was_examined(target))
1294 {
1295 LOG_ERROR("Target not examined yet");
1296 return ERROR_FAIL;
1297 }
1298
1299 int retval = target_read_memory(target, address, 4, 1, value_buf);
1300
1301 if (retval == ERROR_OK)
1302 {
1303 *value = target_buffer_get_u32(target, value_buf);
1304 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1305 }
1306 else
1307 {
1308 *value = 0x0;
1309 LOG_DEBUG("address: 0x%8.8x failed", address);
1310 }
1311
1312 return retval;
1313 }
1314
1315 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1316 {
1317 u8 value_buf[2];
1318 if (!target_was_examined(target))
1319 {
1320 LOG_ERROR("Target not examined yet");
1321 return ERROR_FAIL;
1322 }
1323
1324 int retval = target_read_memory(target, address, 2, 1, value_buf);
1325
1326 if (retval == ERROR_OK)
1327 {
1328 *value = target_buffer_get_u16(target, value_buf);
1329 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1330 }
1331 else
1332 {
1333 *value = 0x0;
1334 LOG_DEBUG("address: 0x%8.8x failed", address);
1335 }
1336
1337 return retval;
1338 }
1339
1340 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1341 {
1342 int retval = target_read_memory(target, address, 1, 1, value);
1343 if (!target_was_examined(target))
1344 {
1345 LOG_ERROR("Target not examined yet");
1346 return ERROR_FAIL;
1347 }
1348
1349 if (retval == ERROR_OK)
1350 {
1351 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1352 }
1353 else
1354 {
1355 *value = 0x0;
1356 LOG_DEBUG("address: 0x%8.8x failed", address);
1357 }
1358
1359 return retval;
1360 }
1361
1362 int target_write_u32(struct target_s *target, u32 address, u32 value)
1363 {
1364 int retval;
1365 u8 value_buf[4];
1366 if (!target_was_examined(target))
1367 {
1368 LOG_ERROR("Target not examined yet");
1369 return ERROR_FAIL;
1370 }
1371
1372 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1373
1374 target_buffer_set_u32(target, value_buf, value);
1375 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1376 {
1377 LOG_DEBUG("failed: %i", retval);
1378 }
1379
1380 return retval;
1381 }
1382
1383 int target_write_u16(struct target_s *target, u32 address, u16 value)
1384 {
1385 int retval;
1386 u8 value_buf[2];
1387 if (!target_was_examined(target))
1388 {
1389 LOG_ERROR("Target not examined yet");
1390 return ERROR_FAIL;
1391 }
1392
1393 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1394
1395 target_buffer_set_u16(target, value_buf, value);
1396 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1397 {
1398 LOG_DEBUG("failed: %i", retval);
1399 }
1400
1401 return retval;
1402 }
1403
1404 int target_write_u8(struct target_s *target, u32 address, u8 value)
1405 {
1406 int retval;
1407 if (!target_was_examined(target))
1408 {
1409 LOG_ERROR("Target not examined yet");
1410 return ERROR_FAIL;
1411 }
1412
1413 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1414
1415 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1416 {
1417 LOG_DEBUG("failed: %i", retval);
1418 }
1419
1420 return retval;
1421 }
1422
1423 int target_register_user_commands(struct command_context_s *cmd_ctx)
1424 {
1425 int retval = ERROR_OK;
1426
1427
1428 /* script procedures */
1429 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1430 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1431 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1432
1433 register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1434 "same args as load_image, image stored in memory - mainly for profiling purposes");
1435
1436 register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1437 "loads active fast load image to current target - mainly for profiling purposes");
1438
1439
1440 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1441 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1442 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1443 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1444 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1445 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1446 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1447 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1448 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1449
1450 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1451 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1452 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1453
1454 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1455 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1456 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1457
1458 register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1459 register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1460 register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1461 register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1462
1463 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1464 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1465 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1466 register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1467
1468 if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1469 return retval;
1470 if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1471 return retval;
1472
1473 return retval;
1474 }
1475
1476 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 {
1478 target_t *target = all_targets;
1479
1480 if (argc == 1)
1481 {
1482 target = get_target(args[0]);
1483 if (target == NULL) {
1484 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1485 goto DumpTargets;
1486 }
1487 if (!target->tap->enabled) {
1488 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1489 "can't be the current target\n",
1490 target->tap->dotted_name);
1491 return ERROR_FAIL;
1492 }
1493
1494 cmd_ctx->current_target = target->target_number;
1495 return ERROR_OK;
1496 }
1497 DumpTargets:
1498
1499 target = all_targets;
1500 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1501 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1502 while (target)
1503 {
1504 const char *state;
1505 char marker = ' ';
1506
1507 if (target->tap->enabled)
1508 state = Jim_Nvp_value2name_simple(nvp_target_state,
1509 target->state)->name;
1510 else
1511 state = "tap-disabled";
1512
1513 if (cmd_ctx->current_target == target->target_number)
1514 marker = '*';
1515
1516 /* keep columns lined up to match the headers above */
1517 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1518 target->target_number,
1519 marker,
1520 target->cmd_name,
1521 target_get_name(target),
1522 Jim_Nvp_value2name_simple(nvp_target_endian,
1523 target->endianness)->name,
1524 target->tap->dotted_name,
1525 state);
1526 target = target->next;
1527 }
1528
1529 return ERROR_OK;
1530 }
1531
1532 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1533
1534 static int powerDropout;
1535 static int srstAsserted;
1536
1537 static int runPowerRestore;
1538 static int runPowerDropout;
1539 static int runSrstAsserted;
1540 static int runSrstDeasserted;
1541
1542 static int sense_handler(void)
1543 {
1544 static int prevSrstAsserted = 0;
1545 static int prevPowerdropout = 0;
1546
1547 int retval;
1548 if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1549 return retval;
1550
1551 int powerRestored;
1552 powerRestored = prevPowerdropout && !powerDropout;
1553 if (powerRestored)
1554 {
1555 runPowerRestore = 1;
1556 }
1557
1558 long long current = timeval_ms();
1559 static long long lastPower = 0;
1560 int waitMore = lastPower + 2000 > current;
1561 if (powerDropout && !waitMore)
1562 {
1563 runPowerDropout = 1;
1564 lastPower = current;
1565 }
1566
1567 if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1568 return retval;
1569
1570 int srstDeasserted;
1571 srstDeasserted = prevSrstAsserted && !srstAsserted;
1572
1573 static long long lastSrst = 0;
1574 waitMore = lastSrst + 2000 > current;
1575 if (srstDeasserted && !waitMore)
1576 {
1577 runSrstDeasserted = 1;
1578 lastSrst = current;
1579 }
1580
1581 if (!prevSrstAsserted && srstAsserted)
1582 {
1583 runSrstAsserted = 1;
1584 }
1585
1586 prevSrstAsserted = srstAsserted;
1587 prevPowerdropout = powerDropout;
1588
1589 if (srstDeasserted || powerRestored)
1590 {
1591 /* Other than logging the event we can't do anything here.
1592 * Issuing a reset is a particularly bad idea as we might
1593 * be inside a reset already.
1594 */
1595 }
1596
1597 return ERROR_OK;
1598 }
1599
1600 /* process target state changes */
1601 int handle_target(void *priv)
1602 {
1603 int retval = ERROR_OK;
1604
1605 /* we do not want to recurse here... */
1606 static int recursive = 0;
1607 if (! recursive)
1608 {
1609 recursive = 1;
1610 sense_handler();
1611 /* danger! running these procedures can trigger srst assertions and power dropouts.
1612 * We need to avoid an infinite loop/recursion here and we do that by
1613 * clearing the flags after running these events.
1614 */
1615 int did_something = 0;
1616 if (runSrstAsserted)
1617 {
1618 Jim_Eval( interp, "srst_asserted");
1619 did_something = 1;
1620 }
1621 if (runSrstDeasserted)
1622 {
1623 Jim_Eval( interp, "srst_deasserted");
1624 did_something = 1;
1625 }
1626 if (runPowerDropout)
1627 {
1628 Jim_Eval( interp, "power_dropout");
1629 did_something = 1;
1630 }
1631 if (runPowerRestore)
1632 {
1633 Jim_Eval( interp, "power_restore");
1634 did_something = 1;
1635 }
1636
1637 if (did_something)
1638 {
1639 /* clear detect flags */
1640 sense_handler();
1641 }
1642
1643 /* clear action flags */
1644
1645 runSrstAsserted=0;
1646 runSrstDeasserted=0;
1647 runPowerRestore=0;
1648 runPowerDropout=0;
1649
1650 recursive = 0;
1651 }
1652
1653 target_t *target = all_targets;
1654
1655 while (target)
1656 {
1657
1658 /* only poll target if we've got power and srst isn't asserted */
1659 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1660 {
1661 /* polling may fail silently until the target has been examined */
1662 if((retval = target_poll(target)) != ERROR_OK)
1663 return retval;
1664 }
1665
1666 target = target->next;
1667 }
1668
1669 return retval;
1670 }
1671
1672 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1673 {
1674 target_t *target;
1675 reg_t *reg = NULL;
1676 int count = 0;
1677 char *value;
1678
1679 LOG_DEBUG("-");
1680
1681 target = get_current_target(cmd_ctx);
1682
1683 /* list all available registers for the current target */
1684 if (argc == 0)
1685 {
1686 reg_cache_t *cache = target->reg_cache;
1687
1688 count = 0;
1689 while(cache)
1690 {
1691 int i;
1692 for (i = 0; i < cache->num_regs; i++)
1693 {
1694 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1695 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1696 free(value);
1697 }
1698 cache = cache->next;
1699 }
1700
1701 return ERROR_OK;
1702 }
1703
1704 /* access a single register by its ordinal number */
1705 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1706 {
1707 unsigned num;
1708 int retval = parse_uint(args[0], &num);
1709 if (ERROR_OK != retval)
1710 return ERROR_COMMAND_SYNTAX_ERROR;
1711
1712 reg_cache_t *cache = target->reg_cache;
1713 count = 0;
1714 while(cache)
1715 {
1716 int i;
1717 for (i = 0; i < cache->num_regs; i++)
1718 {
1719 if (count++ == (int)num)
1720 {
1721 reg = &cache->reg_list[i];
1722 break;
1723 }
1724 }
1725 if (reg)
1726 break;
1727 cache = cache->next;
1728 }
1729
1730 if (!reg)
1731 {
1732 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1733 return ERROR_OK;
1734 }
1735 } else /* access a single register by its name */
1736 {
1737 reg = register_get_by_name(target->reg_cache, args[0], 1);
1738
1739 if (!reg)
1740 {
1741 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1742 return ERROR_OK;
1743 }
1744 }
1745
1746 /* display a register */
1747 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1748 {
1749 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1750 reg->valid = 0;
1751
1752 if (reg->valid == 0)
1753 {
1754 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1755 arch_type->get(reg);
1756 }
1757 value = buf_to_str(reg->value, reg->size, 16);
1758 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1759 free(value);
1760 return ERROR_OK;
1761 }
1762
1763 /* set register value */
1764 if (argc == 2)
1765 {
1766 u8 *buf = malloc(CEIL(reg->size, 8));
1767 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1768
1769 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1770 arch_type->set(reg, buf);
1771
1772 value = buf_to_str(reg->value, reg->size, 16);
1773 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1774 free(value);
1775
1776 free(buf);
1777
1778 return ERROR_OK;
1779 }
1780
1781 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1782
1783 return ERROR_OK;
1784 }
1785
1786 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1787 {
1788 int retval = ERROR_OK;
1789 target_t *target = get_current_target(cmd_ctx);
1790
1791 if (argc == 0)
1792 {
1793 command_print(cmd_ctx, "background polling: %s",
1794 target_continous_poll ? "on" : "off");
1795 if ((retval = target_poll(target)) != ERROR_OK)
1796 return retval;
1797 if ((retval = target_arch_state(target)) != ERROR_OK)
1798 return retval;
1799
1800 }
1801 else if (argc==1)
1802 {
1803 if (strcmp(args[0], "on") == 0)
1804 {
1805 target_continous_poll = 1;
1806 }
1807 else if (strcmp(args[0], "off") == 0)
1808 {
1809 target_continous_poll = 0;
1810 }
1811 else
1812 {
1813 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1814 }
1815 } else
1816 {
1817 return ERROR_COMMAND_SYNTAX_ERROR;
1818 }
1819
1820 return retval;
1821 }
1822
1823 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1824 {
1825 if (argc > 1)
1826 return ERROR_COMMAND_SYNTAX_ERROR;
1827
1828 unsigned ms = 5000;
1829 if (1 == argc)
1830 {
1831 int retval = parse_uint(args[0], &ms);
1832 if (ERROR_OK != retval)
1833 {
1834 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1835 return ERROR_COMMAND_SYNTAX_ERROR;
1836 }
1837 // convert seconds (given) to milliseconds (needed)
1838 ms *= 1000;
1839 }
1840
1841 target_t *target = get_current_target(cmd_ctx);
1842 return target_wait_state(target, TARGET_HALTED, ms);
1843 }
1844
1845 /* wait for target state to change. The trick here is to have a low
1846 * latency for short waits and not to suck up all the CPU time
1847 * on longer waits.
1848 *
1849 * After 500ms, keep_alive() is invoked
1850 */
1851 int target_wait_state(target_t *target, enum target_state state, int ms)
1852 {
1853 int retval;
1854 long long then=0, cur;
1855 int once=1;
1856
1857 for (;;)
1858 {
1859 if ((retval=target_poll(target))!=ERROR_OK)
1860 return retval;
1861 if (target->state == state)
1862 {
1863 break;
1864 }
1865 cur = timeval_ms();
1866 if (once)
1867 {
1868 once=0;
1869 then = timeval_ms();
1870 LOG_DEBUG("waiting for target %s...",
1871 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1872 }
1873
1874 if (cur-then>500)
1875 {
1876 keep_alive();
1877 }
1878
1879 if ((cur-then)>ms)
1880 {
1881 LOG_ERROR("timed out while waiting for target %s",
1882 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1883 return ERROR_FAIL;
1884 }
1885 }
1886
1887 return ERROR_OK;
1888 }
1889
1890 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1891 {
1892 LOG_DEBUG("-");
1893
1894 target_t *target = get_current_target(cmd_ctx);
1895 int retval = target_halt(target);
1896 if (ERROR_OK != retval)
1897 return retval;
1898
1899 if (argc == 1)
1900 {
1901 unsigned wait;
1902 retval = parse_uint(args[0], &wait);
1903 if (ERROR_OK != retval)
1904 return ERROR_COMMAND_SYNTAX_ERROR;
1905 if (!wait)
1906 return ERROR_OK;
1907 }
1908
1909 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1910 }
1911
1912 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1913 {
1914 target_t *target = get_current_target(cmd_ctx);
1915
1916 LOG_USER("requesting target halt and executing a soft reset");
1917
1918 target->type->soft_reset_halt(target);
1919
1920 return ERROR_OK;
1921 }
1922
1923 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1924 {
1925 if (argc > 1)
1926 return ERROR_COMMAND_SYNTAX_ERROR;
1927
1928 enum target_reset_mode reset_mode = RESET_RUN;
1929 if (argc == 1)
1930 {
1931 const Jim_Nvp *n;
1932 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1933 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1934 return ERROR_COMMAND_SYNTAX_ERROR;
1935 }
1936 reset_mode = n->value;
1937 }
1938
1939 /* reset *all* targets */
1940 return target_process_reset(cmd_ctx, reset_mode);
1941 }
1942
1943
1944 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1945 {
1946 if (argc > 1)
1947 return ERROR_COMMAND_SYNTAX_ERROR;
1948
1949 target_t *target = get_current_target(cmd_ctx);
1950 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1951
1952 /* with no args, resume from current pc, addr = 0,
1953 * with one arguments, addr = args[0],
1954 * handle breakpoints, not debugging */
1955 u32 addr = 0;
1956 if (argc == 1)
1957 {
1958 int retval = parse_u32(args[0], &addr);
1959 if (ERROR_OK != retval)
1960 return retval;
1961 }
1962
1963 return target_resume(target, 0, addr, 1, 0);
1964 }
1965
1966 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1967 {
1968 if (argc > 1)
1969 return ERROR_COMMAND_SYNTAX_ERROR;
1970
1971 LOG_DEBUG("-");
1972
1973 /* with no args, step from current pc, addr = 0,
1974 * with one argument addr = args[0],
1975 * handle breakpoints, debugging */
1976 u32 addr = 0;
1977 if (argc == 1)
1978 {
1979 int retval = parse_u32(args[0], &addr);
1980 if (ERROR_OK != retval)
1981 return retval;
1982 }
1983
1984 target_t *target = get_current_target(cmd_ctx);
1985 return target->type->step(target, 0, addr, 1);
1986 }
1987
1988 static void handle_md_output(struct command_context_s *cmd_ctx,
1989 struct target_s *target, u32 address, unsigned size,
1990 unsigned count, const u8 *buffer)
1991 {
1992 const unsigned line_bytecnt = 32;
1993 unsigned line_modulo = line_bytecnt / size;
1994
1995 char output[line_bytecnt * 4 + 1];
1996 unsigned output_len = 0;
1997
1998 const char *value_fmt;
1999 switch (size) {
2000 case 4: value_fmt = "%8.8x "; break;
2001 case 2: value_fmt = "%4.2x "; break;
2002 case 1: value_fmt = "%2.2x "; break;
2003 default:
2004 LOG_ERROR("invalid memory read size: %u", size);
2005 exit(-1);
2006 }
2007
2008 for (unsigned i = 0; i < count; i++)
2009 {
2010 if (i % line_modulo == 0)
2011 {
2012 output_len += snprintf(output + output_len,
2013 sizeof(output) - output_len,
2014 "0x%8.8x: ", address + (i*size));
2015 }
2016
2017 u32 value=0;
2018 const u8 *value_ptr = buffer + i * size;
2019 switch (size) {
2020 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2021 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2022 case 1: value = *value_ptr;
2023 }
2024 output_len += snprintf(output + output_len,
2025 sizeof(output) - output_len,
2026 value_fmt, value);
2027
2028 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2029 {
2030 command_print(cmd_ctx, "%s", output);
2031 output_len = 0;
2032 }
2033 }
2034 }
2035
2036 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2037 {
2038 if (argc < 1)
2039 return ERROR_COMMAND_SYNTAX_ERROR;
2040
2041 unsigned size = 0;
2042 switch (cmd[2]) {
2043 case 'w': size = 4; break;
2044 case 'h': size = 2; break;
2045 case 'b': size = 1; break;
2046 default: return ERROR_COMMAND_SYNTAX_ERROR;
2047 }
2048
2049 u32 address;
2050 int retval = parse_u32(args[0], &address);
2051 if (ERROR_OK != retval)
2052 return retval;
2053
2054 unsigned count = 1;
2055 if (argc == 2)
2056 {
2057 retval = parse_uint(args[1], &count);
2058 if (ERROR_OK != retval)
2059 return retval;
2060 }
2061
2062 u8 *buffer = calloc(count, size);
2063
2064 target_t *target = get_current_target(cmd_ctx);
2065 retval = target_read_memory(target,
2066 address, size, count, buffer);
2067 if (ERROR_OK == retval)
2068 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2069
2070 free(buffer);
2071
2072 return retval;
2073 }
2074
2075 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2076 {
2077 if ((argc < 2) || (argc > 3))
2078 return ERROR_COMMAND_SYNTAX_ERROR;
2079
2080 u32 address;
2081 int retval = parse_u32(args[0], &address);
2082 if (ERROR_OK != retval)
2083 return retval;
2084
2085 u32 value;
2086 retval = parse_u32(args[1], &value);
2087 if (ERROR_OK != retval)
2088 return retval;
2089
2090 unsigned count = 1;
2091 if (argc == 3)
2092 {
2093 retval = parse_uint(args[2], &count);
2094 if (ERROR_OK != retval)
2095 return retval;
2096 }
2097
2098 target_t *target = get_current_target(cmd_ctx);
2099 unsigned wordsize;
2100 u8 value_buf[4];
2101 switch (cmd[2])
2102 {
2103 case 'w':
2104 wordsize = 4;
2105 target_buffer_set_u32(target, value_buf, value);
2106 break;
2107 case 'h':
2108 wordsize = 2;
2109 target_buffer_set_u16(target, value_buf, value);
2110 break;
2111 case 'b':
2112 wordsize = 1;
2113 value_buf[0] = value;
2114 break;
2115 default:
2116 return ERROR_COMMAND_SYNTAX_ERROR;
2117 }
2118 for (unsigned i = 0; i < count; i++)
2119 {
2120 retval = target_write_memory(target,
2121 address + i * wordsize, wordsize, 1, value_buf);
2122 if (ERROR_OK != retval)
2123 return retval;
2124 keep_alive();
2125 }
2126
2127 return ERROR_OK;
2128
2129 }
2130
2131 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2132 {
2133 u8 *buffer;
2134 u32 buf_cnt;
2135 u32 image_size;
2136 u32 min_address=0;
2137 u32 max_address=0xffffffff;
2138 int i;
2139 int retval, retvaltemp;
2140
2141 image_t image;
2142
2143 duration_t duration;
2144 char *duration_text;
2145
2146 target_t *target = get_current_target(cmd_ctx);
2147
2148 if ((argc < 1)||(argc > 5))
2149 {
2150 return ERROR_COMMAND_SYNTAX_ERROR;
2151 }
2152
2153 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2154 if (argc >= 2)
2155 {
2156 image.base_address_set = 1;
2157 image.base_address = strtoul(args[1], NULL, 0);
2158 }
2159 else
2160 {
2161 image.base_address_set = 0;
2162 }
2163
2164
2165 image.start_address_set = 0;
2166
2167 if (argc>=4)
2168 {
2169 min_address=strtoul(args[3], NULL, 0);
2170 }
2171 if (argc>=5)
2172 {
2173 max_address=strtoul(args[4], NULL, 0)+min_address;
2174 }
2175
2176 if (min_address>max_address)
2177 {
2178 return ERROR_COMMAND_SYNTAX_ERROR;
2179 }
2180
2181 duration_start_measure(&duration);
2182
2183 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2184 {
2185 return ERROR_OK;
2186 }
2187
2188 image_size = 0x0;
2189 retval = ERROR_OK;
2190 for (i = 0; i < image.num_sections; i++)
2191 {
2192 buffer = malloc(image.sections[i].size);
2193 if (buffer == NULL)
2194 {
2195 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2196 break;
2197 }
2198
2199 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2200 {
2201 free(buffer);
2202 break;
2203 }
2204
2205 u32 offset=0;
2206 u32 length=buf_cnt;
2207
2208 /* DANGER!!! beware of unsigned comparision here!!! */
2209
2210 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2211 (image.sections[i].base_address<max_address))
2212 {
2213 if (image.sections[i].base_address<min_address)
2214 {
2215 /* clip addresses below */
2216 offset+=min_address-image.sections[i].base_address;
2217 length-=offset;
2218 }
2219
2220 if (image.sections[i].base_address+buf_cnt>max_address)
2221 {
2222 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2223 }
2224
2225 if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2226 {
2227 free(buffer);
2228 break;
2229 }
2230 image_size += length;
2231 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2232 }
2233
2234 free(buffer);
2235 }
2236
2237 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2238 {
2239 image_close(&image);
2240 return retvaltemp;
2241 }
2242
2243 if (retval==ERROR_OK)
2244 {
2245 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2246 }
2247 free(duration_text);
2248
2249 image_close(&image);
2250
2251 return retval;
2252
2253 }
2254
2255 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2256 {
2257 fileio_t fileio;
2258
2259 u32 address;
2260 u32 size;
2261 u8 buffer[560];
2262 int retval=ERROR_OK, retvaltemp;
2263
2264 duration_t duration;
2265 char *duration_text;
2266
2267 target_t *target = get_current_target(cmd_ctx);
2268
2269 if (argc != 3)
2270 {
2271 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2272 return ERROR_OK;
2273 }
2274
2275 address = strtoul(args[1], NULL, 0);
2276 size = strtoul(args[2], NULL, 0);
2277
2278 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2279 {
2280 return ERROR_OK;
2281 }
2282
2283 duration_start_measure(&duration);
2284
2285 while (size > 0)
2286 {
2287 u32 size_written;
2288 u32 this_run_size = (size > 560) ? 560 : size;
2289
2290 retval = target_read_buffer(target, address, this_run_size, buffer);
2291 if (retval != ERROR_OK)
2292 {
2293 break;
2294 }
2295
2296 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2297 if (retval != ERROR_OK)
2298 {
2299 break;
2300 }
2301
2302 size -= this_run_size;
2303 address += this_run_size;
2304 }
2305
2306 if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2307 return retvaltemp;
2308
2309 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2310 return retvaltemp;
2311
2312 if (retval==ERROR_OK)
2313 {
2314 command_print(cmd_ctx, "dumped %lld byte in %s",
2315 fileio.size, duration_text);
2316 free(duration_text);
2317 }
2318
2319 return retval;
2320 }
2321
2322 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2323 {
2324 u8 *buffer;
2325 u32 buf_cnt;
2326 u32 image_size;
2327 int i;
2328 int retval, retvaltemp;
2329 u32 checksum = 0;
2330 u32 mem_checksum = 0;
2331
2332 image_t image;
2333
2334 duration_t duration;
2335 char *duration_text;
2336
2337 target_t *target = get_current_target(cmd_ctx);
2338
2339 if (argc < 1)
2340 {
2341 return ERROR_COMMAND_SYNTAX_ERROR;
2342 }
2343
2344 if (!target)
2345 {
2346 LOG_ERROR("no target selected");
2347 return ERROR_FAIL;
2348 }
2349
2350 duration_start_measure(&duration);
2351
2352 if (argc >= 2)
2353 {
2354 image.base_address_set = 1;
2355 image.base_address = strtoul(args[1], NULL, 0);
2356 }
2357 else
2358 {
2359 image.base_address_set = 0;
2360 image.base_address = 0x0;
2361 }
2362
2363 image.start_address_set = 0;
2364
2365 if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2366 {
2367 return retval;
2368 }
2369
2370 image_size = 0x0;
2371 retval=ERROR_OK;
2372 for (i = 0; i < image.num_sections; i++)
2373 {
2374 buffer = malloc(image.sections[i].size);
2375 if (buffer == NULL)
2376 {
2377 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2378 break;
2379 }
2380 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2381 {
2382 free(buffer);
2383 break;
2384 }
2385
2386 if (verify)
2387 {
2388 /* calculate checksum of image */
2389 image_calculate_checksum( buffer, buf_cnt, &checksum );
2390
2391 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2392 if( retval != ERROR_OK )
2393 {
2394 free(buffer);
2395 break;
2396 }
2397
2398 if( checksum != mem_checksum )
2399 {
2400 /* failed crc checksum, fall back to a binary compare */
2401 u8 *data;
2402
2403 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2404
2405 data = (u8*)malloc(buf_cnt);
2406
2407 /* Can we use 32bit word accesses? */
2408 int size = 1;
2409 int count = buf_cnt;
2410 if ((count % 4) == 0)
2411 {
2412 size *= 4;
2413 count /= 4;
2414 }
2415 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2416 if (retval == ERROR_OK)
2417 {
2418 u32 t;
2419 for (t = 0; t < buf_cnt; t++)
2420 {
2421 if (data[t] != buffer[t])
2422 {
2423 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2424 free(data);
2425 free(buffer);
2426 retval=ERROR_FAIL;
2427 goto done;
2428 }
2429 if ((t%16384)==0)
2430 {
2431 keep_alive();
2432 }
2433 }
2434 }
2435
2436 free(data);
2437 }
2438 } else
2439 {
2440 command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2441 }
2442
2443 free(buffer);
2444 image_size += buf_cnt;
2445 }
2446 done:
2447
2448 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2449 {
2450 image_close(&image);
2451 return retvaltemp;
2452 }
2453
2454 if (retval==ERROR_OK)
2455 {
2456 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2457 }
2458 free(duration_text);
2459
2460 image_close(&image);
2461
2462 return retval;
2463 }
2464
2465 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2466 {
2467 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2468 }
2469
2470 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2471 {
2472 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2473 }
2474
2475 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2476 {
2477 target_t *target = get_current_target(cmd_ctx);
2478 breakpoint_t *breakpoint = target->breakpoints;
2479 while (breakpoint)
2480 {
2481 if (breakpoint->type == BKPT_SOFT)
2482 {
2483 char* buf = buf_to_str(breakpoint->orig_instr,
2484 breakpoint->length, 16);
2485 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2486 breakpoint->address, breakpoint->length,
2487 breakpoint->set, buf);
2488 free(buf);
2489 }
2490 else
2491 {
2492 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2493 breakpoint->address, breakpoint->length, breakpoint->set);
2494 }
2495
2496 breakpoint = breakpoint->next;
2497 }
2498 return ERROR_OK;
2499 }
2500
2501 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2502 u32 addr, u32 length, int hw)
2503 {
2504 target_t *target = get_current_target(cmd_ctx);
2505 int retval = breakpoint_add(target, addr, length, hw);
2506 if (ERROR_OK == retval)
2507 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2508 else
2509 LOG_ERROR("Failure setting breakpoint");
2510 return retval;
2511 }
2512
2513 static int handle_bp_command(struct command_context_s *cmd_ctx,
2514 char *cmd, char **args, int argc)
2515 {
2516 if (argc == 0)
2517 return handle_bp_command_list(cmd_ctx);
2518
2519 if (argc < 2 || argc > 3)
2520 {
2521 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2522 return ERROR_COMMAND_SYNTAX_ERROR;
2523 }
2524
2525 u32 addr = strtoul(args[0], NULL, 0);
2526 u32 length = strtoul(args[1], NULL, 0);
2527
2528 int hw = BKPT_SOFT;
2529 if (argc == 3)
2530 {
2531 if (strcmp(args[2], "hw") == 0)
2532 hw = BKPT_HARD;
2533 else
2534 return ERROR_COMMAND_SYNTAX_ERROR;
2535 }
2536
2537 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2538 }
2539
2540 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2541 {
2542 target_t *target = get_current_target(cmd_ctx);
2543
2544 if (argc > 0)
2545 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2546
2547 return ERROR_OK;
2548 }
2549
2550 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2551 {
2552 target_t *target = get_current_target(cmd_ctx);
2553 int retval;
2554
2555 if (argc == 0)
2556 {
2557 watchpoint_t *watchpoint = target->watchpoints;
2558
2559 while (watchpoint)
2560 {
2561 command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2562 watchpoint = watchpoint->next;
2563 }
2564 }
2565 else if (argc >= 2)
2566 {
2567 enum watchpoint_rw type = WPT_ACCESS;
2568 u32 data_value = 0x0;
2569 u32 data_mask = 0xffffffff;
2570
2571 if (argc >= 3)
2572 {
2573 switch(args[2][0])
2574 {
2575 case 'r':
2576 type = WPT_READ;
2577 break;
2578 case 'w':
2579 type = WPT_WRITE;
2580 break;
2581 case 'a':
2582 type = WPT_ACCESS;
2583 break;
2584 default:
2585 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2586 return ERROR_OK;
2587 }
2588 }
2589 if (argc >= 4)
2590 {
2591 data_value = strtoul(args[3], NULL, 0);
2592 }
2593 if (argc >= 5)
2594 {
2595 data_mask = strtoul(args[4], NULL, 0);
2596 }
2597
2598 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2599 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2600 {
2601 LOG_ERROR("Failure setting breakpoints");
2602 }
2603 }
2604 else
2605 {
2606 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2607 }
2608
2609 return ERROR_OK;
2610 }
2611
2612 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2613 {
2614 if (argc != 1)
2615 return ERROR_COMMAND_SYNTAX_ERROR;
2616
2617 target_t *target = get_current_target(cmd_ctx);
2618 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2619
2620 return ERROR_OK;
2621 }
2622
2623
2624 /**
2625 * Translate a virtual address to a physical address.
2626 *
2627 * The low-level target implementation must have logged a detailed error
2628 * which is forwarded to telnet/GDB session.
2629 */
2630 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2631 char *cmd, char **args, int argc)
2632 {
2633 if (argc != 1)
2634 return ERROR_COMMAND_SYNTAX_ERROR;
2635
2636 target_t *target = get_current_target(cmd_ctx);
2637 u32 va = strtoul(args[0], NULL, 0);
2638 u32 pa;
2639
2640 int retval = target->type->virt2phys(target, va, &pa);
2641 if (retval == ERROR_OK)
2642 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2643
2644 return retval;
2645 }
2646
2647 static void writeData(FILE *f, const void *data, size_t len)
2648 {
2649 size_t written = fwrite(data, 1, len, f);
2650 if (written != len)
2651 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2652 }
2653
2654 static void writeLong(FILE *f, int l)
2655 {
2656 int i;
2657 for (i=0; i<4; i++)
2658 {
2659 char c=(l>>(i*8))&0xff;
2660 writeData(f, &c, 1);
2661 }
2662
2663 }
2664
2665 static void writeString(FILE *f, char *s)
2666 {
2667 writeData(f, s, strlen(s));
2668 }
2669
2670 /* Dump a gmon.out histogram file. */
2671 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2672 {
2673 u32 i;
2674 FILE *f=fopen(filename, "w");
2675 if (f==NULL)
2676 return;
2677 writeString(f, "gmon");
2678 writeLong(f, 0x00000001); /* Version */
2679 writeLong(f, 0); /* padding */
2680 writeLong(f, 0); /* padding */
2681 writeLong(f, 0); /* padding */
2682
2683 u8 zero = 0; /* GMON_TAG_TIME_HIST */
2684 writeData(f, &zero, 1);
2685
2686 /* figure out bucket size */
2687 u32 min=samples[0];
2688 u32 max=samples[0];
2689 for (i=0; i<sampleNum; i++)
2690 {
2691 if (min>samples[i])
2692 {
2693 min=samples[i];
2694 }
2695 if (max<samples[i])
2696 {
2697 max=samples[i];
2698 }
2699 }
2700
2701 int addressSpace=(max-min+1);
2702
2703 static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2704 u32 length = addressSpace;
2705 if (length > maxBuckets)
2706 {
2707 length=maxBuckets;
2708 }
2709 int *buckets=malloc(sizeof(int)*length);
2710 if (buckets==NULL)
2711 {
2712 fclose(f);
2713 return;
2714 }
2715 memset(buckets, 0, sizeof(int)*length);
2716 for (i=0; i<sampleNum;i++)
2717 {
2718 u32 address=samples[i];
2719 long long a=address-min;
2720 long long b=length-1;
2721 long long c=addressSpace-1;
2722 int index=(a*b)/c; /* danger!!!! int32 overflows */
2723 buckets[index]++;
2724 }
2725
2726 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2727 writeLong(f, min); /* low_pc */
2728 writeLong(f, max); /* high_pc */
2729 writeLong(f, length); /* # of samples */
2730 writeLong(f, 64000000); /* 64MHz */
2731 writeString(f, "seconds");
2732 for (i=0; i<(15-strlen("seconds")); i++)
2733 writeData(f, &zero, 1);
2734 writeString(f, "s");
2735
2736 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2737
2738 char *data=malloc(2*length);
2739 if (data!=NULL)
2740 {
2741 for (i=0; i<length;i++)
2742 {
2743 int val;
2744 val=buckets[i];
2745 if (val>65535)
2746 {
2747 val=65535;
2748 }
2749 data[i*2]=val&0xff;
2750 data[i*2+1]=(val>>8)&0xff;
2751 }
2752 free(buckets);
2753 writeData(f, data, length * 2);
2754 free(data);
2755 } else
2756 {
2757 free(buckets);
2758 }
2759
2760 fclose(f);
2761 }
2762
2763 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2764 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2765 {
2766 target_t *target = get_current_target(cmd_ctx);
2767 struct timeval timeout, now;
2768
2769 gettimeofday(&timeout, NULL);
2770 if (argc!=2)
2771 {
2772 return ERROR_COMMAND_SYNTAX_ERROR;
2773 }
2774 char *end;
2775 timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2776 if (*end)
2777 {
2778 return ERROR_OK;
2779 }
2780
2781 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2782
2783 static const int maxSample=10000;
2784 u32 *samples=malloc(sizeof(u32)*maxSample);
2785 if (samples==NULL)
2786 return ERROR_OK;
2787
2788 int numSamples=0;
2789 int retval=ERROR_OK;
2790 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2791 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2792
2793 for (;;)
2794 {
2795 target_poll(target);
2796 if (target->state == TARGET_HALTED)
2797 {
2798 u32 t=*((u32 *)reg->value);
2799 samples[numSamples++]=t;
2800 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2801 target_poll(target);
2802 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2803 } else if (target->state == TARGET_RUNNING)
2804 {
2805 /* We want to quickly sample the PC. */
2806 if((retval = target_halt(target)) != ERROR_OK)
2807 {
2808 free(samples);
2809 return retval;
2810 }
2811 } else
2812 {
2813 command_print(cmd_ctx, "Target not halted or running");
2814 retval=ERROR_OK;
2815 break;
2816 }
2817 if (retval!=ERROR_OK)
2818 {
2819 break;
2820 }
2821
2822 gettimeofday(&now, NULL);
2823 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2824 {
2825 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2826 if((retval = target_poll(target)) != ERROR_OK)
2827 {
2828 free(samples);
2829 return retval;
2830 }
2831 if (target->state == TARGET_HALTED)
2832 {
2833 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2834 }
2835 if((retval = target_poll(target)) != ERROR_OK)
2836 {
2837 free(samples);
2838 return retval;
2839 }
2840 writeGmon(samples, numSamples, args[1]);
2841 command_print(cmd_ctx, "Wrote %s", args[1]);
2842 break;
2843 }
2844 }
2845 free(samples);
2846
2847 return ERROR_OK;
2848 }
2849
2850 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2851 {
2852 char *namebuf;
2853 Jim_Obj *nameObjPtr, *valObjPtr;
2854 int result;
2855
2856 namebuf = alloc_printf("%s(%d)", varname, idx);
2857 if (!namebuf)
2858 return JIM_ERR;
2859
2860 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2861 valObjPtr = Jim_NewIntObj(interp, val);
2862 if (!nameObjPtr || !valObjPtr)
2863 {
2864 free(namebuf);
2865 return JIM_ERR;
2866 }
2867
2868 Jim_IncrRefCount(nameObjPtr);
2869 Jim_IncrRefCount(valObjPtr);
2870 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2871 Jim_DecrRefCount(interp, nameObjPtr);
2872 Jim_DecrRefCount(interp, valObjPtr);
2873 free(namebuf);
2874 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2875 return result;
2876 }
2877
2878 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2879 {
2880 command_context_t *context;
2881 target_t *target;
2882
2883 context = Jim_GetAssocData(interp, "context");
2884 if (context == NULL)
2885 {
2886 LOG_ERROR("mem2array: no command context");
2887 return JIM_ERR;
2888 }
2889 target = get_current_target(context);
2890 if (target == NULL)
2891 {
2892 LOG_ERROR("mem2array: no current target");
2893 return JIM_ERR;
2894 }
2895
2896 return target_mem2array(interp, target, argc-1, argv+1);
2897 }
2898
2899 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2900 {
2901 long l;
2902 u32 width;
2903 int len;
2904 u32 addr;
2905 u32 count;
2906 u32 v;
2907 const char *varname;
2908 u8 buffer[4096];
2909 int n, e, retval;
2910 u32 i;
2911
2912 /* argv[1] = name of array to receive the data
2913 * argv[2] = desired width
2914 * argv[3] = memory address
2915 * argv[4] = count of times to read
2916 */
2917 if (argc != 4) {
2918 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2919 return JIM_ERR;
2920 }
2921 varname = Jim_GetString(argv[0], &len);
2922 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2923
2924 e = Jim_GetLong(interp, argv[1], &l);
2925 width = l;
2926 if (e != JIM_OK) {
2927 return e;
2928 }
2929
2930 e = Jim_GetLong(interp, argv[2], &l);
2931 addr = l;
2932 if (e != JIM_OK) {
2933 return e;
2934 }
2935 e = Jim_GetLong(interp, argv[3], &l);
2936 len = l;
2937 if (e != JIM_OK) {
2938 return e;
2939 }
2940 switch (width) {
2941 case 8:
2942 width = 1;
2943 break;
2944 case 16:
2945 width = 2;
2946 break;
2947 case 32:
2948 width = 4;
2949 break;
2950 default:
2951 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2952 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2953 return JIM_ERR;
2954 }
2955 if (len == 0) {
2956 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2957 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2958 return JIM_ERR;
2959 }
2960 if ((addr + (len * width)) < addr) {
2961 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2962 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2963 return JIM_ERR;
2964 }
2965 /* absurd transfer size? */
2966 if (len > 65536) {
2967 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2968 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2969 return JIM_ERR;
2970 }
2971
2972 if ((width == 1) ||
2973 ((width == 2) && ((addr & 1) == 0)) ||
2974 ((width == 4) && ((addr & 3) == 0))) {
2975 /* all is well */
2976 } else {
2977 char buf[100];
2978 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2979 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2980 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2981 return JIM_ERR;
2982 }
2983
2984 /* Transfer loop */
2985
2986 /* index counter */
2987 n = 0;
2988 /* assume ok */
2989 e = JIM_OK;
2990 while (len) {
2991 /* Slurp... in buffer size chunks */
2992
2993 count = len; /* in objects.. */
2994 if (count > (sizeof(buffer)/width)) {
2995 count = (sizeof(buffer)/width);
2996 }
2997
2998 retval = target_read_memory( target, addr, width, count, buffer );
2999 if (retval != ERROR_OK) {
3000 /* BOO !*/
3001 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3002 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3003 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3004 e = JIM_ERR;
3005 len = 0;
3006 } else {
3007 v = 0; /* shut up gcc */
3008 for (i = 0 ;i < count ;i++, n++) {
3009 switch (width) {
3010 case 4:
3011 v = target_buffer_get_u32(target, &buffer[i*width]);
3012 break;
3013 case 2:
3014 v = target_buffer_get_u16(target, &buffer[i*width]);
3015 break;
3016 case 1:
3017 v = buffer[i] & 0x0ff;
3018 break;
3019 }
3020 new_int_array_element(interp, varname, n, v);
3021 }
3022 len -= count;
3023 }
3024 }
3025
3026 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3027
3028 return JIM_OK;
3029 }
3030
3031 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
3032 {
3033 char *namebuf;
3034 Jim_Obj *nameObjPtr, *valObjPtr;
3035 int result;
3036 long l;
3037
3038 namebuf = alloc_printf("%s(%d)", varname, idx);
3039 if (!namebuf)
3040 return JIM_ERR;
3041
3042 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3043 if (!nameObjPtr)
3044 {
3045 free(namebuf);
3046 return JIM_ERR;
3047 }
3048
3049 Jim_IncrRefCount(nameObjPtr);
3050 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3051 Jim_DecrRefCount(interp, nameObjPtr);
3052 free(namebuf);
3053 if (valObjPtr == NULL)
3054 return JIM_ERR;
3055
3056 result = Jim_GetLong(interp, valObjPtr, &l);
3057 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3058 *val = l;
3059 return result;
3060 }
3061
3062 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3063 {
3064 command_context_t *context;
3065 target_t *target;
3066
3067 context = Jim_GetAssocData(interp, "context");
3068 if (context == NULL){
3069 LOG_ERROR("array2mem: no command context");
3070 return JIM_ERR;
3071 }
3072 target = get_current_target(context);
3073 if (target == NULL){
3074 LOG_ERROR("array2mem: no current target");
3075 return JIM_ERR;
3076 }
3077
3078 return target_array2mem( interp,target, argc-1, argv+1 );
3079 }
3080
3081 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3082 {
3083 long l;
3084 u32 width;
3085 int len;
3086 u32 addr;
3087 u32 count;
3088 u32 v;
3089 const char *varname;
3090 u8 buffer[4096];
3091 int n, e, retval;
3092 u32 i;
3093
3094 /* argv[1] = name of array to get the data
3095 * argv[2] = desired width
3096 * argv[3] = memory address
3097 * argv[4] = count to write
3098 */
3099 if (argc != 4) {
3100 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3101 return JIM_ERR;
3102 }
3103 varname = Jim_GetString(argv[0], &len);
3104 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3105
3106 e = Jim_GetLong(interp, argv[1], &l);
3107 width = l;
3108 if (e != JIM_OK) {
3109 return e;
3110 }
3111
3112 e = Jim_GetLong(interp, argv[2], &l);
3113 addr = l;
3114 if (e != JIM_OK) {
3115 return e;
3116 }
3117 e = Jim_GetLong(interp, argv[3], &l);
3118 len = l;
3119 if (e != JIM_OK) {
3120 return e;
3121 }
3122 switch (width) {
3123 case 8:
3124 width = 1;
3125 break;
3126 case 16:
3127 width = 2;
3128 break;
3129 case 32:
3130 width = 4;
3131 break;
3132 default:
3133 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3134 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3135 return JIM_ERR;
3136 }
3137 if (len == 0) {
3138 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3139 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3140 return JIM_ERR;
3141 }
3142 if ((addr + (len * width)) < addr) {
3143 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3144 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3145 return JIM_ERR;
3146 }
3147 /* absurd transfer size? */
3148 if (len > 65536) {
3149 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3150 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3151 return JIM_ERR;
3152 }
3153
3154 if ((width == 1) ||
3155 ((width == 2) && ((addr & 1) == 0)) ||
3156 ((width == 4) && ((addr & 3) == 0))) {
3157 /* all is well */
3158 } else {
3159 char buf[100];
3160 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3161 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3162 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3163 return JIM_ERR;
3164 }
3165
3166 /* Transfer loop */
3167
3168 /* index counter */
3169 n = 0;
3170 /* assume ok */
3171 e = JIM_OK;
3172 while (len) {
3173 /* Slurp... in buffer size chunks */
3174
3175 count = len; /* in objects.. */
3176 if (count > (sizeof(buffer)/width)) {
3177 count = (sizeof(buffer)/width);
3178 }
3179
3180 v = 0; /* shut up gcc */
3181 for (i = 0 ;i < count ;i++, n++) {
3182 get_int_array_element(interp, varname, n, &v);
3183 switch (width) {
3184 case 4:
3185 target_buffer_set_u32(target, &buffer[i*width], v);
3186 break;
3187 case 2:
3188 target_buffer_set_u16(target, &buffer[i*width], v);
3189 break;
3190 case 1:
3191 buffer[i] = v & 0x0ff;
3192 break;
3193 }
3194 }
3195 len -= count;
3196
3197 retval = target_write_memory(target, addr, width, count, buffer);
3198 if (retval != ERROR_OK) {
3199 /* BOO !*/
3200 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3201 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3202 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3203 e = JIM_ERR;
3204 len = 0;
3205 }
3206 }
3207
3208 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3209
3210 return JIM_OK;
3211 }
3212
3213 void target_all_handle_event( enum target_event e )
3214 {
3215 target_t *target;
3216
3217 LOG_DEBUG( "**all*targets: event: %d, %s",
3218 e,
3219 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3220
3221 target = all_targets;
3222 while (target){
3223 target_handle_event( target, e );
3224 target = target->next;
3225 }
3226 }
3227
3228 void target_handle_event( target_t *target, enum target_event e )
3229 {
3230 target_event_action_t *teap;
3231 int done;
3232
3233 teap = target->event_action;
3234
3235 done = 0;
3236 while( teap ){
3237 if( teap->event == e ){
3238 done = 1;
3239 LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3240 target->target_number,
3241 target->cmd_name,
3242 target_get_name(target),
3243 e,
3244 Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3245 Jim_GetString( teap->body, NULL ) );
3246 if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3247 {
3248 Jim_PrintErrorMessage(interp);
3249 }
3250 }
3251 teap = teap->next;
3252 }
3253 if( !done ){
3254 LOG_DEBUG( "event: %d %s - no action",
3255 e,
3256 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3257 }
3258 }
3259
3260 enum target_cfg_param {
3261 TCFG_TYPE,
3262 TCFG_EVENT,
3263 TCFG_WORK_AREA_VIRT,
3264 TCFG_WORK_AREA_PHYS,
3265 TCFG_WORK_AREA_SIZE,
3266 TCFG_WORK_AREA_BACKUP,
3267 TCFG_ENDIAN,
3268 TCFG_VARIANT,
3269 TCFG_CHAIN_POSITION,
3270 };
3271
3272 static Jim_Nvp nvp_config_opts[] = {
3273 { .name = "-type", .value = TCFG_TYPE },
3274 { .name = "-event", .value = TCFG_EVENT },
3275 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3276 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3277 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3278 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3279 { .name = "-endian" , .value = TCFG_ENDIAN },
3280 { .name = "-variant", .value = TCFG_VARIANT },
3281 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3282
3283 { .name = NULL, .value = -1 }
3284 };
3285
3286 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3287 {
3288 Jim_Nvp *n;
3289 Jim_Obj *o;
3290 jim_wide w;
3291 char *cp;
3292 int e;
3293
3294 /* parse config or cget options ... */
3295 while( goi->argc > 0 ){
3296 Jim_SetEmptyResult( goi->interp );
3297 /* Jim_GetOpt_Debug( goi ); */
3298
3299 if( target->type->target_jim_configure ){
3300 /* target defines a configure function */
3301 /* target gets first dibs on parameters */
3302 e = (*(target->type->target_jim_configure))( target, goi );
3303 if( e == JIM_OK ){
3304 /* more? */
3305 continue;
3306 }
3307 if( e == JIM_ERR ){
3308 /* An error */
3309 return e;
3310 }
3311 /* otherwise we 'continue' below */
3312 }
3313 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3314 if( e != JIM_OK ){
3315 Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3316 return e;
3317 }
3318 switch( n->value ){
3319 case TCFG_TYPE:
3320 /* not setable */
3321 if( goi->isconfigure ){
3322 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3323 return JIM_ERR;
3324 } else {
3325 no_params:
3326 if( goi->argc != 0 ){
3327 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3328 return JIM_ERR;
3329 }
3330 }
3331 Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3332 /* loop for more */
3333 break;
3334 case TCFG_EVENT:
3335 if( goi->argc == 0 ){
3336 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3337 return JIM_ERR;
3338 }
3339
3340 e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3341 if( e != JIM_OK ){
3342 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3343 return e;
3344 }
3345
3346 if( goi->isconfigure ){
3347 if( goi->argc != 1 ){
3348 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3349 return JIM_ERR;
3350 }
3351 } else {
3352 if( goi->argc != 0 ){
3353 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3354 return JIM_ERR;
3355 }
3356 }
3357
3358 {
3359 target_event_action_t *teap;
3360
3361 teap = target->event_action;
3362 /* replace existing? */
3363 while( teap ){
3364 if( teap->event == (enum target_event)n->value ){
3365 break;
3366 }
3367 teap = teap->next;
3368 }
3369
3370 if( goi->isconfigure ){
3371 if( teap == NULL ){
3372 /* create new */
3373 teap = calloc( 1, sizeof(*teap) );
3374 }
3375 teap->event = n->value;
3376 Jim_GetOpt_Obj( goi, &o );
3377 if( teap->body ){
3378 Jim_DecrRefCount( interp, teap->body );
3379 }
3380 teap->body = Jim_DuplicateObj( goi->interp, o );
3381 /*
3382 * FIXME:
3383 * Tcl/TK - "tk events" have a nice feature.
3384 * See the "BIND" command.
3385 * We should support that here.
3386 * You can specify %X and %Y in the event code.
3387 * The idea is: %T - target name.
3388 * The idea is: %N - target number
3389 * The idea is: %E - event name.
3390 */
3391 Jim_IncrRefCount( teap->body );
3392
3393 /* add to head of event list */
3394 teap->next = target->event_action;
3395 target->event_action = teap;
3396 Jim_SetEmptyResult(goi->interp);
3397 } else {
3398 /* get */
3399 if( teap == NULL ){
3400 Jim_SetEmptyResult( goi->interp );
3401 } else {
3402 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3403 }
3404 }
3405 }
3406 /* loop for more */
3407 break;
3408
3409 case TCFG_WORK_AREA_VIRT:
3410 if( goi->isconfigure ){
3411 target_free_all_working_areas(target);
3412 e = Jim_GetOpt_Wide( goi, &w );
3413 if( e != JIM_OK ){
3414 return e;
3415 }
3416 target->working_area_virt = w;
3417 } else {
3418 if( goi->argc != 0 ){
3419 goto no_params;
3420 }
3421 }
3422 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3423 /* loop for more */
3424 break;
3425
3426 case TCFG_WORK_AREA_PHYS:
3427 if( goi->isconfigure ){
3428 target_free_all_working_areas(target);
3429 e = Jim_GetOpt_Wide( goi, &w );
3430 if( e != JIM_OK ){
3431 return e;
3432 }
3433 target->working_area_phys = w;
3434 } else {
3435 if( goi->argc != 0 ){
3436 goto no_params;
3437 }
3438 }
3439 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3440 /* loop for more */
3441 break;
3442
3443 case TCFG_WORK_AREA_SIZE:
3444 if( goi->isconfigure ){
3445 target_free_all_working_areas(target);
3446 e = Jim_GetOpt_Wide( goi, &w );
3447 if( e != JIM_OK ){
3448 return e;
3449 }
3450 target->working_area_size = w;
3451 } else {
3452 if( goi->argc != 0 ){
3453 goto no_params;
3454 }
3455 }
3456 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3457 /* loop for more */
3458 break;
3459
3460 case TCFG_WORK_AREA_BACKUP:
3461 if( goi->isconfigure ){
3462 target_free_all_working_areas(target);
3463 e = Jim_GetOpt_Wide( goi, &w );
3464 if( e != JIM_OK ){
3465 return e;
3466 }
3467 /* make this exactly 1 or 0 */
3468 target->backup_working_area = (!!w);
3469 } else {
3470 if( goi->argc != 0 ){
3471 goto no_params;
3472 }
3473 }
3474 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3475 /* loop for more e*/
3476 break;
3477
3478 case TCFG_ENDIAN:
3479 if( goi->isconfigure ){
3480 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3481 if( e != JIM_OK ){
3482 Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3483 return e;
3484 }
3485 target->endianness = n->value;
3486 } else {
3487 if( goi->argc != 0 ){
3488 goto no_params;
3489 }
3490 }
3491 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3492 if( n->name == NULL ){
3493 target->endianness = TARGET_LITTLE_ENDIAN;
3494 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3495 }
3496 Jim_SetResultString( goi->interp, n->name, -1 );
3497 /* loop for more */
3498 break;
3499
3500 case TCFG_VARIANT:
3501 if( goi->isconfigure ){
3502 if( goi->argc < 1 ){
3503 Jim_SetResult_sprintf( goi->interp,
3504 "%s ?STRING?",
3505 n->name );
3506 return JIM_ERR;
3507 }
3508 if( target->variant ){
3509 free((void *)(target->variant));
3510 }
3511 e = Jim_GetOpt_String( goi, &cp, NULL );
3512 target->variant = strdup(cp);
3513 } else {
3514 if( goi->argc != 0 ){
3515 goto no_params;
3516 }
3517 }
3518 Jim_SetResultString( goi->interp, target->variant,-1 );
3519 /* loop for more */
3520 break;
3521 case TCFG_CHAIN_POSITION:
3522 if( goi->isconfigure ){
3523 Jim_Obj *o;
3524 jtag_tap_t *tap;
3525 target_free_all_working_areas(target);
3526 e = Jim_GetOpt_Obj( goi, &o );
3527 if( e != JIM_OK ){
3528 return e;
3529 }
3530 tap = jtag_tap_by_jim_obj( goi->interp, o );
3531 if( tap == NULL ){
3532 return JIM_ERR;
3533 }
3534 /* make this exactly 1 or 0 */
3535 target->tap = tap;
3536 } else {
3537 if( goi->argc != 0 ){
3538 goto no_params;
3539 }
3540 }
3541 Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3542 /* loop for more e*/
3543 break;
3544 }
3545 } /* while( goi->argc ) */
3546
3547
3548 /* done - we return */
3549 return JIM_OK;
3550 }
3551
3552 /** this is the 'tcl' handler for the target specific command */
3553 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3554 {
3555 Jim_GetOptInfo goi;
3556 jim_wide a,b,c;
3557 int x,y,z;
3558 u8 target_buf[32];
3559 Jim_Nvp *n;
3560 target_t *target;
3561 struct command_context_s *cmd_ctx;
3562 int e;
3563
3564 enum {
3565 TS_CMD_CONFIGURE,
3566 TS_CMD_CGET,
3567
3568 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3569 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3570 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3571 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3572 TS_CMD_EXAMINE,
3573 TS_CMD_POLL,
3574 TS_CMD_RESET,
3575 TS_CMD_HALT,
3576 TS_CMD_WAITSTATE,
3577 TS_CMD_EVENTLIST,
3578 TS_CMD_CURSTATE,
3579 TS_CMD_INVOKE_EVENT,
3580 };
3581
3582 static const Jim_Nvp target_options[] = {
3583 { .name = "configure", .value = TS_CMD_CONFIGURE },
3584 { .name = "cget", .value = TS_CMD_CGET },
3585 { .name = "mww", .value = TS_CMD_MWW },
3586 { .name = "mwh", .value = TS_CMD_MWH },
3587 { .name = "mwb", .value = TS_CMD_MWB },
3588 { .name = "mdw", .value = TS_CMD_MDW },
3589 { .name = "mdh", .value = TS_CMD_MDH },
3590 { .name = "mdb", .value = TS_CMD_MDB },
3591 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3592 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3593 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3594 { .name = "curstate", .value = TS_CMD_CURSTATE },
3595
3596 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3597 { .name = "arp_poll", .value = TS_CMD_POLL },
3598 { .name = "arp_reset", .value = TS_CMD_RESET },
3599 { .name = "arp_halt", .value = TS_CMD_HALT },
3600 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3601 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3602
3603 { .name = NULL, .value = -1 },
3604 };
3605
3606 /* go past the "command" */
3607 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3608
3609 target = Jim_CmdPrivData( goi.interp );
3610 cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3611
3612 /* commands here are in an NVP table */
3613 e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3614 if( e != JIM_OK ){
3615 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3616 return e;
3617 }
3618 /* Assume blank result */
3619 Jim_SetEmptyResult( goi.interp );
3620
3621 switch( n->value ){
3622 case TS_CMD_CONFIGURE:
3623 if( goi.argc < 2 ){
3624 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3625 return JIM_ERR;
3626 }
3627 goi.isconfigure = 1;
3628 return target_configure( &goi, target );
3629 case TS_CMD_CGET:
3630 // some things take params
3631 if( goi.argc < 1 ){
3632 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3633 return JIM_ERR;
3634 }
3635 goi.isconfigure = 0;
3636 return target_configure( &goi, target );
3637 break;
3638 case TS_CMD_MWW:
3639 case TS_CMD_MWH:
3640 case TS_CMD_MWB:
3641 /* argv[0] = cmd
3642 * argv[1] = address
3643 * argv[2] = data
3644 * argv[3] = optional count.
3645 */
3646
3647 if( (goi.argc == 3) || (goi.argc == 4) ){
3648 /* all is well */
3649 } else {
3650 mwx_error:
3651 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3652 return JIM_ERR;
3653 }
3654
3655 e = Jim_GetOpt_Wide( &goi, &a );
3656 if( e != JIM_OK ){
3657 goto mwx_error;
3658 }
3659
3660 e = Jim_GetOpt_Wide( &goi, &b );
3661 if( e != JIM_OK ){
3662 goto mwx_error;
3663 }
3664 if( goi.argc ){
3665 e = Jim_GetOpt_Wide( &goi, &c );
3666 if( e != JIM_OK ){
3667 goto mwx_error;
3668 }
3669 } else {
3670 c = 1;
3671 }
3672
3673 switch( n->value ){
3674 case TS_CMD_MWW:
3675 target_buffer_set_u32( target, target_buf, b );
3676 b = 4;
3677 break;
3678 case TS_CMD_MWH:
3679 target_buffer_set_u16( target, target_buf, b );
3680 b = 2;
3681 break;
3682 case TS_CMD_MWB:
3683 target_buffer_set_u8( target, target_buf, b );
3684 b = 1;
3685 break;
3686 }
3687 for( x = 0 ; x < c ; x++ ){
3688 e = target_write_memory( target, a, b, 1, target_buf );
3689 if( e != ERROR_OK ){
3690 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3691 return JIM_ERR;
3692 }
3693 /* b = width */
3694 a = a + b;
3695 }
3696 return JIM_OK;
3697 break;
3698
3699 /* display */
3700 case TS_CMD_MDW:
3701 case TS_CMD_MDH:
3702 case TS_CMD_MDB:
3703 /* argv[0] = command
3704 * argv[1] = address
3705 * argv[2] = optional count
3706 */
3707 if( (goi.argc == 2) || (goi.argc == 3) ){
3708 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3709 return JIM_ERR;
3710 }
3711 e = Jim_GetOpt_Wide( &goi, &a );
3712 if( e != JIM_OK ){
3713 return JIM_ERR;
3714 }
3715 if( goi.argc ){
3716 e = Jim_GetOpt_Wide( &goi, &c );
3717 if( e != JIM_OK ){
3718 return JIM_ERR;
3719 }
3720 } else {
3721 c = 1;
3722 }
3723 b = 1; /* shut up gcc */
3724 switch( n->value ){
3725 case TS_CMD_MDW:
3726 b = 4;
3727 break;
3728 case TS_CMD_MDH:
3729 b = 2;
3730 break;
3731 case TS_CMD_MDB:
3732 b = 1;
3733 break;
3734 }
3735
3736 /* convert to "bytes" */
3737 c = c * b;
3738 /* count is now in 'BYTES' */
3739 while( c > 0 ){
3740 y = c;
3741 if( y > 16 ){
3742 y = 16;
3743 }
3744 e = target_read_memory( target, a, b, y / b, target_buf );
3745 if( e != ERROR_OK ){
3746 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3747 return JIM_ERR;
3748 }
3749
3750 Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3751 switch( b ){
3752 case 4:
3753 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3754 z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3755 Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3756 }
3757 for( ; (x < 16) ; x += 4 ){
3758 Jim_fprintf( interp, interp->cookie_stdout, " " );
3759 }
3760 break;
3761 case 2:
3762 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3763 z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3764 Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3765 }
3766 for( ; (x < 16) ; x += 2 ){
3767 Jim_fprintf( interp, interp->cookie_stdout, " " );
3768 }
3769 break;
3770 case 1:
3771 default:
3772 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3773 z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3774 Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3775 }
3776 for( ; (x < 16) ; x += 1 ){
3777 Jim_fprintf( interp, interp->cookie_stdout, " " );
3778 }
3779 break;
3780 }
3781 /* ascii-ify the bytes */
3782 for( x = 0 ; x < y ; x++ ){
3783 if( (target_buf[x] >= 0x20) &&
3784 (target_buf[x] <= 0x7e) ){
3785 /* good */
3786 } else {
3787 /* smack it */
3788 target_buf[x] = '.';
3789 }
3790 }
3791 /* space pad */
3792 while( x < 16 ){
3793 target_buf[x] = ' ';
3794 x++;
3795 }
3796 /* terminate */
3797 target_buf[16] = 0;
3798 /* print - with a newline */
3799 Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3800 /* NEXT... */
3801 c -= 16;
3802 a += 16;
3803 }
3804 return JIM_OK;
3805 case TS_CMD_MEM2ARRAY:
3806 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3807 break;
3808 case TS_CMD_ARRAY2MEM:
3809 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3810 break;
3811 case TS_CMD_EXAMINE:
3812 if( goi.argc ){
3813 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3814 return JIM_ERR;
3815 }
3816 if (!target->tap->enabled)
3817 goto err_tap_disabled;
3818 e = target->type->examine( target );
3819 if( e != ERROR_OK ){
3820 Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3821 return JIM_ERR;
3822 }
3823 return JIM_OK;
3824 case TS_CMD_POLL:
3825 if( goi.argc ){
3826 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3827 return JIM_ERR;
3828 }
3829 if (!target->tap->enabled)
3830 goto err_tap_disabled;
3831 if( !(target_was_examined(target)) ){
3832 e = ERROR_TARGET_NOT_EXAMINED;
3833 } else {
3834 e = target->type->poll( target );
3835 }
3836 if( e != ERROR_OK ){
3837 Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3838 return JIM_ERR;
3839 } else {
3840 return JIM_OK;
3841 }
3842 break;
3843 case TS_CMD_RESET:
3844 if( goi.argc != 2 ){
3845 Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3846 return JIM_ERR;
3847 }
3848 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3849 if( e != JIM_OK ){
3850 Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3851 return e;
3852 }
3853 /* the halt or not param */
3854 e = Jim_GetOpt_Wide( &goi, &a);
3855 if( e != JIM_OK ){
3856 return e;
3857 }
3858 if (!target->tap->enabled)
3859 goto err_tap_disabled;
3860 /* determine if we should halt or not. */
3861 target->reset_halt = !!a;
3862 /* When this happens - all workareas are invalid. */
3863 target_free_all_working_areas_restore(target, 0);
3864
3865 /* do the assert */
3866 if( n->value == NVP_ASSERT ){
3867 target->type->assert_reset( target );
3868 } else {
3869 target->type->deassert_reset( target );
3870 }
3871 return JIM_OK;
3872 case TS_CMD_HALT:
3873 if( goi.argc ){
3874 Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3875 return JIM_ERR;
3876 }
3877 if (!target->tap->enabled)
3878 goto err_tap_disabled;
3879 target->type->halt( target );
3880 return JIM_OK;
3881 case TS_CMD_WAITSTATE:
3882 /* params: <name> statename timeoutmsecs */
3883 if( goi.argc != 2 ){
3884 Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3885 return JIM_ERR;
3886 }
3887 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3888 if( e != JIM_OK ){
3889 Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3890 return e;
3891 }
3892 e = Jim_GetOpt_Wide( &goi, &a );
3893 if( e != JIM_OK ){
3894 return e;
3895 }
3896 if (!target->tap->enabled)
3897 goto err_tap_disabled;
3898 e = target_wait_state( target, n->value, a );
3899 if( e != ERROR_OK ){
3900 Jim_SetResult_sprintf( goi.interp,
3901 "target: %s wait %s fails (%d) %s",
3902 target->cmd_name,
3903 n->name,
3904 e, target_strerror_safe(e) );
3905 return JIM_ERR;
3906 } else {
3907 return JIM_OK;
3908 }
3909 case TS_CMD_EVENTLIST:
3910 /* List for human, Events defined for this target.
3911 * scripts/programs should use 'name cget -event NAME'
3912 */
3913 {
3914 target_event_action_t *teap;
3915 teap = target->event_action;
3916 command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3917 target->target_number,
3918 target->cmd_name );
3919 command_print( cmd_ctx, "%-25s | Body", "Event");
3920 command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3921 while( teap ){
3922 command_print( cmd_ctx,
3923 "%-25s | %s",
3924 Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3925 Jim_GetString( teap->body, NULL ) );
3926 teap = teap->next;
3927 }
3928 command_print( cmd_ctx, "***END***");
3929 return JIM_OK;
3930 }
3931 case TS_CMD_CURSTATE:
3932 if( goi.argc != 0 ){
3933 Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3934 return JIM_ERR;
3935 }
3936 Jim_SetResultString( goi.interp,
3937 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3938 return JIM_OK;
3939 case TS_CMD_INVOKE_EVENT:
3940 if( goi.argc != 1 ){
3941 Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3942 return JIM_ERR;
3943 }
3944 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3945 if( e != JIM_OK ){
3946 Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3947 return e;
3948 }
3949 target_handle_event( target, n->value );
3950 return JIM_OK;
3951 }
3952 return JIM_ERR;
3953
3954 err_tap_disabled:
3955 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
3956 return JIM_ERR;
3957 }
3958
3959 static int target_create( Jim_GetOptInfo *goi )
3960 {
3961 Jim_Obj *new_cmd;
3962 Jim_Cmd *cmd;
3963 const char *cp;
3964 char *cp2;
3965 int e;
3966 int x;
3967 target_t *target;
3968 struct command_context_s *cmd_ctx;
3969
3970 cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3971 if( goi->argc < 3 ){
3972 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3973 return JIM_ERR;
3974 }
3975
3976 /* COMMAND */
3977 Jim_GetOpt_Obj( goi, &new_cmd );
3978 /* does this command exist? */
3979 cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3980 if( cmd ){
3981 cp = Jim_GetString( new_cmd, NULL );
3982 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3983 return JIM_ERR;
3984 }
3985
3986 /* TYPE */
3987 e = Jim_GetOpt_String( goi, &cp2, NULL );
3988 cp = cp2;
3989 /* now does target type exist */
3990 for( x = 0 ; target_types[x] ; x++ ){
3991 if( 0 == strcmp( cp, target_types[x]->name ) ){
3992 /* found */
3993 break;
3994 }
3995 }
3996 if( target_types[x] == NULL ){
3997 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3998 for( x = 0 ; target_types[x] ; x++ ){
3999 if( target_types[x+1] ){
4000 Jim_AppendStrings( goi->interp,
4001 Jim_GetResult(goi->interp),
4002 target_types[x]->name,
4003 ", ", NULL);
4004 } else {
4005 Jim_AppendStrings( goi->interp,
4006 Jim_GetResult(goi->interp),
4007 " or ",
4008 target_types[x]->name,NULL );
4009 }
4010 }
4011 return JIM_ERR;
4012 }
4013
4014 /* Create it */
4015 target = calloc(1,sizeof(target_t));
4016 /* set target number */
4017 target->target_number = new_target_number();
4018
4019 /* allocate memory for each unique target type */
4020 target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4021
4022 memcpy( target->type, target_types[x], sizeof(target_type_t));
4023
4024 /* will be set by "-endian" */
4025 target->endianness = TARGET_ENDIAN_UNKNOWN;
4026
4027 target->working_area = 0x0;
4028 target->working_area_size = 0x0;
4029 target->working_areas = NULL;
4030 target->backup_working_area = 0;
4031
4032 target->state = TARGET_UNKNOWN;
4033 target->debug_reason = DBG_REASON_UNDEFINED;
4034 target->reg_cache = NULL;
4035 target->breakpoints = NULL;
4036 target->watchpoints = NULL;
4037 target->next = NULL;
4038 target->arch_info = NULL;
4039
4040 target->display = 1;
4041
4042 /* initialize trace information */
4043 target->trace_info = malloc(sizeof(trace_t));
4044 target->trace_info->num_trace_points = 0;
4045 target->trace_info->trace_points_size = 0;
4046 target->trace_info->trace_points = NULL;
4047 target->trace_info->trace_history_size = 0;
4048 target->trace_info->trace_history = NULL;
4049 target->trace_info->trace_history_pos = 0;
4050 target->trace_info->trace_history_overflowed = 0;
4051
4052 target->dbgmsg = NULL;
4053 target->dbg_msg_enabled = 0;
4054
4055 target->endianness = TARGET_ENDIAN_UNKNOWN;
4056
4057 /* Do the rest as "configure" options */
4058 goi->isconfigure = 1;
4059 e = target_configure( goi, target);
4060
4061 if (target->tap == NULL)
4062 {
4063 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4064 e=JIM_ERR;
4065 }
4066
4067 if( e != JIM_OK ){
4068 free( target->type );
4069 free( target );
4070 return e;
4071 }
4072
4073 if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4074 /* default endian to little if not specified */
4075 target->endianness = TARGET_LITTLE_ENDIAN;
4076 }
4077
4078 /* incase variant is not set */
4079 if (!target->variant)
4080 target->variant = strdup("");
4081
4082 /* create the target specific commands */
4083 if( target->type->register_commands ){
4084 (*(target->type->register_commands))( cmd_ctx );
4085 }
4086 if( target->type->target_create ){
4087 (*(target->type->target_create))( target, goi->interp );
4088 }
4089
4090 /* append to end of list */
4091 {
4092 target_t **tpp;
4093 tpp = &(all_targets);
4094 while( *tpp ){
4095 tpp = &( (*tpp)->next );
4096 }
4097 *tpp = target;
4098 }
4099
4100 cp = Jim_GetString( new_cmd, NULL );
4101 target->cmd_name = strdup(cp);
4102
4103 /* now - create the new target name command */
4104 e = Jim_CreateCommand( goi->interp,
4105 /* name */
4106 cp,
4107 tcl_target_func, /* C function */
4108 target, /* private data */
4109 NULL ); /* no del proc */
4110
4111 return e;
4112 }
4113
4114 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4115 {
4116 int x,r,e;
4117 jim_wide w;
4118 struct command_context_s *cmd_ctx;
4119 target_t *target;
4120 Jim_GetOptInfo goi;
4121 enum tcmd {
4122 /* TG = target generic */
4123 TG_CMD_CREATE,
4124 TG_CMD_TYPES,
4125 TG_CMD_NAMES,
4126 TG_CMD_CURRENT,
4127 TG_CMD_NUMBER,
4128 TG_CMD_COUNT,
4129 };
4130 const char *target_cmds[] = {
4131 "create", "types", "names", "current", "number",
4132 "count",
4133 NULL /* terminate */
4134 };
4135
4136 LOG_DEBUG("Target command params:");
4137 LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4138
4139 cmd_ctx = Jim_GetAssocData( interp, "context" );
4140
4141 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4142
4143 if( goi.argc == 0 ){
4144 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4145 return JIM_ERR;
4146 }
4147
4148 /* Jim_GetOpt_Debug( &goi ); */
4149 r = Jim_GetOpt_Enum( &goi, target_cmds, &x );
4150 if( r != JIM_OK ){
4151 return r;
4152 }
4153
4154 switch(x){
4155 default:
4156 Jim_Panic(goi.interp,"Why am I here?");
4157 return JIM_ERR;
4158 case TG_CMD_CURRENT:
4159 if( goi.argc != 0 ){
4160 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4161 return JIM_ERR;
4162 }
4163 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4164 return JIM_OK;
4165 case TG_CMD_TYPES:
4166 if( goi.argc != 0 ){
4167 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4168 return JIM_ERR;
4169 }
4170 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4171 for( x = 0 ; target_types[x] ; x++ ){
4172 Jim_ListAppendElement( goi.interp,
4173 Jim_GetResult(goi.interp),
4174 Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4175 }
4176 return JIM_OK;
4177 case TG_CMD_NAMES:
4178 if( goi.argc != 0 ){
4179 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4180 return JIM_ERR;
4181 }
4182 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4183 target = all_targets;
4184 while( target ){
4185 Jim_ListAppendElement( goi.interp,
4186 Jim_GetResult(goi.interp),
4187 Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4188 target = target->next;
4189 }
4190 return JIM_OK;
4191 case TG_CMD_CREATE:
4192 if( goi.argc < 3 ){
4193 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name ... config options ...");
4194 return JIM_ERR;
4195 }
4196 return target_create( &goi );
4197 break;
4198 case TG_CMD_NUMBER:
4199 if( goi.argc != 1 ){
4200 Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4201 return JIM_ERR;
4202 }
4203 e = Jim_GetOpt_Wide( &goi, &w );
4204 if( e != JIM_OK ){
4205 return JIM_ERR;
4206 }
4207 {
4208 target_t *t;
4209 t = get_target_by_num(w);
4210 if( t == NULL ){
4211 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4212 return JIM_ERR;
4213 }
4214 Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4215 return JIM_OK;
4216 }
4217 case TG_CMD_COUNT:
4218 if( goi.argc != 0 ){
4219 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4220 return JIM_ERR;
4221 }
4222 Jim_SetResult( goi.interp,
4223 Jim_NewIntObj( goi.interp, max_target_number()));
4224 return JIM_OK;
4225 }
4226
4227 return JIM_ERR;
4228 }
4229
4230
4231 struct FastLoad
4232 {
4233 u32 address;
4234 u8 *data;
4235 int length;
4236
4237 };
4238
4239 static int fastload_num;
4240 static struct FastLoad *fastload;
4241
4242 static void free_fastload(void)
4243 {
4244 if (fastload!=NULL)
4245 {
4246 int i;
4247 for (i=0; i<fastload_num; i++)
4248 {
4249 if (fastload[i].data)
4250 free(fastload[i].data);
4251 }
4252 free(fastload);
4253 fastload=NULL;
4254 }
4255 }
4256
4257
4258
4259
4260 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4261 {
4262 u8 *buffer;
4263 u32 buf_cnt;
4264 u32 image_size;
4265 u32 min_address=0;
4266 u32 max_address=0xffffffff;
4267 int i;
4268 int retval;
4269
4270 image_t image;
4271
4272 duration_t duration;
4273 char *duration_text;
4274
4275 if ((argc < 1)||(argc > 5))
4276 {
4277 return ERROR_COMMAND_SYNTAX_ERROR;
4278 }
4279
4280 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4281 if (argc >= 2)
4282 {
4283 image.base_address_set = 1;
4284 image.base_address = strtoul(args[1], NULL, 0);
4285 }
4286 else
4287 {
4288 image.base_address_set = 0;
4289 }
4290
4291
4292 image.start_address_set = 0;
4293
4294 if (argc>=4)
4295 {
4296 min_address=strtoul(args[3], NULL, 0);
4297 }
4298 if (argc>=5)
4299 {
4300 max_address=strtoul(args[4], NULL, 0)+min_address;
4301 }
4302
4303 if (min_address>max_address)
4304 {
4305 return ERROR_COMMAND_SYNTAX_ERROR;
4306 }
4307
4308 duration_start_measure(&duration);
4309
4310 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4311 {
4312 return ERROR_OK;
4313 }
4314
4315 image_size = 0x0;
4316 retval = ERROR_OK;
4317 fastload_num=image.num_sections;
4318 fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4319 if (fastload==NULL)
4320 {
4321 image_close(&image);
4322 return ERROR_FAIL;
4323 }
4324 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4325 for (i = 0; i < image.num_sections; i++)
4326 {
4327 buffer = malloc(image.sections[i].size);
4328 if (buffer == NULL)
4329 {
4330 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4331 break;
4332 }
4333
4334 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4335 {
4336 free(buffer);
4337 break;
4338 }
4339
4340 u32 offset=0;
4341 u32 length=buf_cnt;
4342
4343
4344 /* DANGER!!! beware of unsigned comparision here!!! */
4345
4346 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4347 (image.sections[i].base_address<max_address))
4348 {
4349 if (image.sections[i].base_address<min_address)
4350 {
4351 /* clip addresses below */
4352 offset+=min_address-image.sections[i].base_address;
4353 length-=offset;
4354 }
4355
4356 if (image.sections[i].base_address+buf_cnt>max_address)
4357 {
4358 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4359 }
4360
4361 fastload[i].address=image.sections[i].base_address+offset;
4362 fastload[i].data=malloc(length);
4363 if (fastload[i].data==NULL)
4364 {
4365 free(buffer);
4366 break;
4367 }
4368 memcpy(fastload[i].data, buffer+offset, length);
4369 fastload[i].length=length;
4370
4371 image_size += length;
4372 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4373 }
4374
4375 free(buffer);
4376 }
4377
4378 duration_stop_measure(&duration, &duration_text);
4379 if (retval==ERROR_OK)
4380 {
4381 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4382 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4383 }
4384 free(duration_text);
4385
4386 image_close(&image);
4387
4388 if (retval!=ERROR_OK)
4389 {
4390 free_fastload();
4391 }
4392
4393 return retval;
4394 }
4395
4396 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4397 {
4398 if (argc>0)
4399 return ERROR_COMMAND_SYNTAX_ERROR;
4400 if (fastload==NULL)
4401 {
4402 LOG_ERROR("No image in memory");
4403 return ERROR_FAIL;
4404 }
4405 int i;
4406 int ms=timeval_ms();
4407 int size=0;
4408 int retval=ERROR_OK;
4409 for (i=0; i<fastload_num;i++)
4410 {
4411 target_t *target = get_current_target(cmd_ctx);
4412 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4413 if (retval==ERROR_OK)
4414 {
4415 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4416 }
4417 size+=fastload[i].length;
4418 }
4419 int after=timeval_ms();
4420 command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4421 return retval;
4422 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)