Improve handle_load_image_command argument parsing:
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95 &arm7tdmi_target,
96 &arm9tdmi_target,
97 &arm920t_target,
98 &arm720t_target,
99 &arm966e_target,
100 &arm926ejs_target,
101 &feroceon_target,
102 &xscale_target,
103 &cortexm3_target,
104 &cortexa8_target,
105 &arm11_target,
106 &mips_m4k_target,
107 &avr_target,
108 NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116 { .name = "assert", NVP_ASSERT },
117 { .name = "deassert", NVP_DEASSERT },
118 { .name = "T", NVP_ASSERT },
119 { .name = "F", NVP_DEASSERT },
120 { .name = "t", NVP_ASSERT },
121 { .name = "f", NVP_DEASSERT },
122 { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
132 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
135 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137 { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142 const Jim_Nvp *n;
143
144 n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145 if( n->name == NULL ){
146 return "unknown";
147 } else {
148 return n->name;
149 }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
155
156 { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157 { .value = TARGET_EVENT_HALTED, .name = "halted" },
158 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165 /* historical name */
166
167 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
170 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
171 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
172 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
174 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
175 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
176 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
177 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
191
192 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
194
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
197 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
198
199 { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203 { .name = "unknown", .value = TARGET_UNKNOWN },
204 { .name = "running", .value = TARGET_RUNNING },
205 { .name = "halted", .value = TARGET_HALTED },
206 { .name = "reset", .value = TARGET_RESET },
207 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208 { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
213 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
214 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
215 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
217 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
218 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
219 { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223 { .name = "big", .value = TARGET_BIG_ENDIAN },
224 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225 { .name = "be", .value = TARGET_BIG_ENDIAN },
226 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
227 { .name = NULL, .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231 { .name = "unknown", .value = RESET_UNKNOWN },
232 { .name = "run" , .value = RESET_RUN },
233 { .name = "halt" , .value = RESET_HALT },
234 { .name = "init" , .value = RESET_INIT },
235 { .name = NULL , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240 target_t *t;
241 int x;
242
243 x = -1;
244 t = all_targets;
245 while( t ){
246 if( x < t->target_number ){
247 x = (t->target_number)+1;
248 }
249 t = t->next;
250 }
251 return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257 target_t *t;
258 int x;
259
260 /* number is 0 based */
261 x = -1;
262 t = all_targets;
263 while(t){
264 if( x < t->target_number ){
265 x = t->target_number;
266 }
267 t = t->next;
268 }
269 return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277 if (target->endianness == TARGET_LITTLE_ENDIAN)
278 return le_to_h_u32(buffer);
279 else
280 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286 if (target->endianness == TARGET_LITTLE_ENDIAN)
287 return le_to_h_u16(buffer);
288 else
289 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295 return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301 if (target->endianness == TARGET_LITTLE_ENDIAN)
302 h_u32_to_le(buffer, value);
303 else
304 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310 if (target->endianness == TARGET_LITTLE_ENDIAN)
311 h_u16_to_le(buffer, value);
312 else
313 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319 *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325 target_t *target;
326
327 /* try as tcltarget name */
328 for (target = all_targets; target; target = target->next) {
329 if (target->cmd_name == NULL)
330 continue;
331 if (strcmp(id, target->cmd_name) == 0)
332 return target;
333 }
334
335 /* no match, try as number */
336 unsigned num;
337 if (parse_uint(id, &num) != ERROR_OK)
338 return NULL;
339
340 for (target = all_targets; target; target = target->next) {
341 if (target->target_number == (int)num)
342 return target;
343 }
344
345 return NULL;
346 }
347
348 /* returns a pointer to the n-th configured target */
349 static target_t *get_target_by_num(int num)
350 {
351 target_t *target = all_targets;
352
353 while (target){
354 if( target->target_number == num ){
355 return target;
356 }
357 target = target->next;
358 }
359
360 return NULL;
361 }
362
363 int get_num_by_target(target_t *query_target)
364 {
365 return query_target->target_number;
366 }
367
368 target_t* get_current_target(command_context_t *cmd_ctx)
369 {
370 target_t *target = get_target_by_num(cmd_ctx->current_target);
371
372 if (target == NULL)
373 {
374 LOG_ERROR("BUG: current_target out of bounds");
375 exit(-1);
376 }
377
378 return target;
379 }
380
381 int target_poll(struct target_s *target)
382 {
383 /* We can't poll until after examine */
384 if (!target_was_examined(target))
385 {
386 /* Fail silently lest we pollute the log */
387 return ERROR_FAIL;
388 }
389 return target->type->poll(target);
390 }
391
392 int target_halt(struct target_s *target)
393 {
394 /* We can't poll until after examine */
395 if (!target_was_examined(target))
396 {
397 LOG_ERROR("Target not examined yet");
398 return ERROR_FAIL;
399 }
400 return target->type->halt(target);
401 }
402
403 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
404 {
405 int retval;
406
407 /* We can't poll until after examine */
408 if (!target_was_examined(target))
409 {
410 LOG_ERROR("Target not examined yet");
411 return ERROR_FAIL;
412 }
413
414 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
415 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
416 * the application.
417 */
418 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
419 return retval;
420
421 return retval;
422 }
423
424 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
425 {
426 char buf[100];
427 int retval;
428 Jim_Nvp *n;
429 n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
430 if( n->name == NULL ){
431 LOG_ERROR("invalid reset mode");
432 return ERROR_FAIL;
433 }
434
435 /* disable polling during reset to make reset event scripts
436 * more predictable, i.e. dr/irscan & pathmove in events will
437 * not have JTAG operations injected into the middle of a sequence.
438 */
439 int save_poll = target_continous_poll;
440 target_continous_poll = 0;
441
442 sprintf( buf, "ocd_process_reset %s", n->name );
443 retval = Jim_Eval( interp, buf );
444
445 target_continous_poll = save_poll;
446
447 if(retval != JIM_OK) {
448 Jim_PrintErrorMessage(interp);
449 return ERROR_FAIL;
450 }
451
452 /* We want any events to be processed before the prompt */
453 retval = target_call_timer_callbacks_now();
454
455 return retval;
456 }
457
458 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
459 {
460 *physical = virtual;
461 return ERROR_OK;
462 }
463
464 static int default_mmu(struct target_s *target, int *enabled)
465 {
466 *enabled = 0;
467 return ERROR_OK;
468 }
469
470 static int default_examine(struct target_s *target)
471 {
472 target_set_examined(target);
473 return ERROR_OK;
474 }
475
476 int target_examine_one(struct target_s *target)
477 {
478 return target->type->examine(target);
479 }
480
481 /* Targets that correctly implement init+examine, i.e.
482 * no communication with target during init:
483 *
484 * XScale
485 */
486 int target_examine(void)
487 {
488 int retval = ERROR_OK;
489 target_t *target;
490
491 for (target = all_targets; target; target = target->next)
492 {
493 if (!target->tap->enabled)
494 continue;
495 if ((retval = target_examine_one(target)) != ERROR_OK)
496 return retval;
497 }
498 return retval;
499 }
500 const char *target_get_name(struct target_s *target)
501 {
502 return target->type->name;
503 }
504
505 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
506 {
507 if (!target_was_examined(target))
508 {
509 LOG_ERROR("Target not examined yet");
510 return ERROR_FAIL;
511 }
512 return target->type->write_memory_imp(target, address, size, count, buffer);
513 }
514
515 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
516 {
517 if (!target_was_examined(target))
518 {
519 LOG_ERROR("Target not examined yet");
520 return ERROR_FAIL;
521 }
522 return target->type->read_memory_imp(target, address, size, count, buffer);
523 }
524
525 static int target_soft_reset_halt_imp(struct target_s *target)
526 {
527 if (!target_was_examined(target))
528 {
529 LOG_ERROR("Target not examined yet");
530 return ERROR_FAIL;
531 }
532 return target->type->soft_reset_halt_imp(target);
533 }
534
535 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
536 {
537 if (!target_was_examined(target))
538 {
539 LOG_ERROR("Target not examined yet");
540 return ERROR_FAIL;
541 }
542 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 }
544
545 int target_read_memory(struct target_s *target,
546 u32 address, u32 size, u32 count, u8 *buffer)
547 {
548 return target->type->read_memory(target, address, size, count, buffer);
549 }
550
551 int target_write_memory(struct target_s *target,
552 u32 address, u32 size, u32 count, u8 *buffer)
553 {
554 return target->type->write_memory(target, address, size, count, buffer);
555 }
556 int target_bulk_write_memory(struct target_s *target,
557 u32 address, u32 count, u8 *buffer)
558 {
559 return target->type->bulk_write_memory(target, address, count, buffer);
560 }
561
562 int target_add_breakpoint(struct target_s *target,
563 struct breakpoint_s *breakpoint)
564 {
565 return target->type->add_breakpoint(target, breakpoint);
566 }
567 int target_remove_breakpoint(struct target_s *target,
568 struct breakpoint_s *breakpoint)
569 {
570 return target->type->remove_breakpoint(target, breakpoint);
571 }
572
573 int target_add_watchpoint(struct target_s *target,
574 struct watchpoint_s *watchpoint)
575 {
576 return target->type->add_watchpoint(target, watchpoint);
577 }
578 int target_remove_watchpoint(struct target_s *target,
579 struct watchpoint_s *watchpoint)
580 {
581 return target->type->remove_watchpoint(target, watchpoint);
582 }
583
584 int target_get_gdb_reg_list(struct target_s *target,
585 struct reg_s **reg_list[], int *reg_list_size)
586 {
587 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
588 }
589 int target_step(struct target_s *target,
590 int current, u32 address, int handle_breakpoints)
591 {
592 return target->type->step(target, current, address, handle_breakpoints);
593 }
594
595
596 int target_run_algorithm(struct target_s *target,
597 int num_mem_params, mem_param_t *mem_params,
598 int num_reg_params, reg_param_t *reg_param,
599 u32 entry_point, u32 exit_point,
600 int timeout_ms, void *arch_info)
601 {
602 return target->type->run_algorithm(target,
603 num_mem_params, mem_params, num_reg_params, reg_param,
604 entry_point, exit_point, timeout_ms, arch_info);
605 }
606
607 /// @returns @c true if the target has been examined.
608 bool target_was_examined(struct target_s *target)
609 {
610 return target->type->examined;
611 }
612 /// Sets the @c examined flag for the given target.
613 void target_set_examined(struct target_s *target)
614 {
615 target->type->examined = true;
616 }
617 // Reset the @c examined flag for the given target.
618 void target_reset_examined(struct target_s *target)
619 {
620 target->type->examined = false;
621 }
622
623
624 int target_init(struct command_context_s *cmd_ctx)
625 {
626 target_t *target = all_targets;
627 int retval;
628
629 while (target)
630 {
631 target_reset_examined(target);
632 if (target->type->examine == NULL)
633 {
634 target->type->examine = default_examine;
635 }
636
637 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
638 {
639 LOG_ERROR("target '%s' init failed", target_get_name(target));
640 return retval;
641 }
642
643 /* Set up default functions if none are provided by target */
644 if (target->type->virt2phys == NULL)
645 {
646 target->type->virt2phys = default_virt2phys;
647 }
648 target->type->virt2phys = default_virt2phys;
649 /* a non-invasive way(in terms of patches) to add some code that
650 * runs before the type->write/read_memory implementation
651 */
652 target->type->write_memory_imp = target->type->write_memory;
653 target->type->write_memory = target_write_memory_imp;
654 target->type->read_memory_imp = target->type->read_memory;
655 target->type->read_memory = target_read_memory_imp;
656 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
657 target->type->soft_reset_halt = target_soft_reset_halt_imp;
658 target->type->run_algorithm_imp = target->type->run_algorithm;
659 target->type->run_algorithm = target_run_algorithm_imp;
660
661 if (target->type->mmu == NULL)
662 {
663 target->type->mmu = default_mmu;
664 }
665 target = target->next;
666 }
667
668 if (all_targets)
669 {
670 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
671 return retval;
672 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
673 return retval;
674 }
675
676 return ERROR_OK;
677 }
678
679 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
680 {
681 target_event_callback_t **callbacks_p = &target_event_callbacks;
682
683 if (callback == NULL)
684 {
685 return ERROR_INVALID_ARGUMENTS;
686 }
687
688 if (*callbacks_p)
689 {
690 while ((*callbacks_p)->next)
691 callbacks_p = &((*callbacks_p)->next);
692 callbacks_p = &((*callbacks_p)->next);
693 }
694
695 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
696 (*callbacks_p)->callback = callback;
697 (*callbacks_p)->priv = priv;
698 (*callbacks_p)->next = NULL;
699
700 return ERROR_OK;
701 }
702
703 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
704 {
705 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
706 struct timeval now;
707
708 if (callback == NULL)
709 {
710 return ERROR_INVALID_ARGUMENTS;
711 }
712
713 if (*callbacks_p)
714 {
715 while ((*callbacks_p)->next)
716 callbacks_p = &((*callbacks_p)->next);
717 callbacks_p = &((*callbacks_p)->next);
718 }
719
720 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
721 (*callbacks_p)->callback = callback;
722 (*callbacks_p)->periodic = periodic;
723 (*callbacks_p)->time_ms = time_ms;
724
725 gettimeofday(&now, NULL);
726 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
727 time_ms -= (time_ms % 1000);
728 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
729 if ((*callbacks_p)->when.tv_usec > 1000000)
730 {
731 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
732 (*callbacks_p)->when.tv_sec += 1;
733 }
734
735 (*callbacks_p)->priv = priv;
736 (*callbacks_p)->next = NULL;
737
738 return ERROR_OK;
739 }
740
741 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
742 {
743 target_event_callback_t **p = &target_event_callbacks;
744 target_event_callback_t *c = target_event_callbacks;
745
746 if (callback == NULL)
747 {
748 return ERROR_INVALID_ARGUMENTS;
749 }
750
751 while (c)
752 {
753 target_event_callback_t *next = c->next;
754 if ((c->callback == callback) && (c->priv == priv))
755 {
756 *p = next;
757 free(c);
758 return ERROR_OK;
759 }
760 else
761 p = &(c->next);
762 c = next;
763 }
764
765 return ERROR_OK;
766 }
767
768 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
769 {
770 target_timer_callback_t **p = &target_timer_callbacks;
771 target_timer_callback_t *c = target_timer_callbacks;
772
773 if (callback == NULL)
774 {
775 return ERROR_INVALID_ARGUMENTS;
776 }
777
778 while (c)
779 {
780 target_timer_callback_t *next = c->next;
781 if ((c->callback == callback) && (c->priv == priv))
782 {
783 *p = next;
784 free(c);
785 return ERROR_OK;
786 }
787 else
788 p = &(c->next);
789 c = next;
790 }
791
792 return ERROR_OK;
793 }
794
795 int target_call_event_callbacks(target_t *target, enum target_event event)
796 {
797 target_event_callback_t *callback = target_event_callbacks;
798 target_event_callback_t *next_callback;
799
800 if (event == TARGET_EVENT_HALTED)
801 {
802 /* execute early halted first */
803 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
804 }
805
806 LOG_DEBUG("target event %i (%s)",
807 event,
808 Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
809
810 target_handle_event( target, event );
811
812 while (callback)
813 {
814 next_callback = callback->next;
815 callback->callback(target, event, callback->priv);
816 callback = next_callback;
817 }
818
819 return ERROR_OK;
820 }
821
822 static int target_timer_callback_periodic_restart(
823 target_timer_callback_t *cb, struct timeval *now)
824 {
825 int time_ms = cb->time_ms;
826 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
827 time_ms -= (time_ms % 1000);
828 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
829 if (cb->when.tv_usec > 1000000)
830 {
831 cb->when.tv_usec = cb->when.tv_usec - 1000000;
832 cb->when.tv_sec += 1;
833 }
834 return ERROR_OK;
835 }
836
837 static int target_call_timer_callback(target_timer_callback_t *cb,
838 struct timeval *now)
839 {
840 cb->callback(cb->priv);
841
842 if (cb->periodic)
843 return target_timer_callback_periodic_restart(cb, now);
844
845 return target_unregister_timer_callback(cb->callback, cb->priv);
846 }
847
848 static int target_call_timer_callbacks_check_time(int checktime)
849 {
850 keep_alive();
851
852 struct timeval now;
853 gettimeofday(&now, NULL);
854
855 target_timer_callback_t *callback = target_timer_callbacks;
856 while (callback)
857 {
858 // cleaning up may unregister and free this callback
859 target_timer_callback_t *next_callback = callback->next;
860
861 bool call_it = callback->callback &&
862 ((!checktime && callback->periodic) ||
863 now.tv_sec > callback->when.tv_sec ||
864 (now.tv_sec == callback->when.tv_sec &&
865 now.tv_usec >= callback->when.tv_usec));
866
867 if (call_it)
868 {
869 int retval = target_call_timer_callback(callback, &now);
870 if (retval != ERROR_OK)
871 return retval;
872 }
873
874 callback = next_callback;
875 }
876
877 return ERROR_OK;
878 }
879
880 int target_call_timer_callbacks(void)
881 {
882 return target_call_timer_callbacks_check_time(1);
883 }
884
885 /* invoke periodic callbacks immediately */
886 int target_call_timer_callbacks_now(void)
887 {
888 return target_call_timer_callbacks_check_time(0);
889 }
890
891 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
892 {
893 working_area_t *c = target->working_areas;
894 working_area_t *new_wa = NULL;
895
896 /* Reevaluate working area address based on MMU state*/
897 if (target->working_areas == NULL)
898 {
899 int retval;
900 int enabled;
901 retval = target->type->mmu(target, &enabled);
902 if (retval != ERROR_OK)
903 {
904 return retval;
905 }
906 if (enabled)
907 {
908 target->working_area = target->working_area_virt;
909 }
910 else
911 {
912 target->working_area = target->working_area_phys;
913 }
914 }
915
916 /* only allocate multiples of 4 byte */
917 if (size % 4)
918 {
919 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
920 size = CEIL(size, 4);
921 }
922
923 /* see if there's already a matching working area */
924 while (c)
925 {
926 if ((c->free) && (c->size == size))
927 {
928 new_wa = c;
929 break;
930 }
931 c = c->next;
932 }
933
934 /* if not, allocate a new one */
935 if (!new_wa)
936 {
937 working_area_t **p = &target->working_areas;
938 u32 first_free = target->working_area;
939 u32 free_size = target->working_area_size;
940
941 LOG_DEBUG("allocating new working area");
942
943 c = target->working_areas;
944 while (c)
945 {
946 first_free += c->size;
947 free_size -= c->size;
948 p = &c->next;
949 c = c->next;
950 }
951
952 if (free_size < size)
953 {
954 LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
955 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
956 }
957
958 new_wa = malloc(sizeof(working_area_t));
959 new_wa->next = NULL;
960 new_wa->size = size;
961 new_wa->address = first_free;
962
963 if (target->backup_working_area)
964 {
965 int retval;
966 new_wa->backup = malloc(new_wa->size);
967 if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
968 {
969 free(new_wa->backup);
970 free(new_wa);
971 return retval;
972 }
973 }
974 else
975 {
976 new_wa->backup = NULL;
977 }
978
979 /* put new entry in list */
980 *p = new_wa;
981 }
982
983 /* mark as used, and return the new (reused) area */
984 new_wa->free = 0;
985 *area = new_wa;
986
987 /* user pointer */
988 new_wa->user = area;
989
990 return ERROR_OK;
991 }
992
993 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
994 {
995 if (area->free)
996 return ERROR_OK;
997
998 if (restore&&target->backup_working_area)
999 {
1000 int retval;
1001 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1002 return retval;
1003 }
1004
1005 area->free = 1;
1006
1007 /* mark user pointer invalid */
1008 *area->user = NULL;
1009 area->user = NULL;
1010
1011 return ERROR_OK;
1012 }
1013
1014 int target_free_working_area(struct target_s *target, working_area_t *area)
1015 {
1016 return target_free_working_area_restore(target, area, 1);
1017 }
1018
1019 /* free resources and restore memory, if restoring memory fails,
1020 * free up resources anyway
1021 */
1022 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1023 {
1024 working_area_t *c = target->working_areas;
1025
1026 while (c)
1027 {
1028 working_area_t *next = c->next;
1029 target_free_working_area_restore(target, c, restore);
1030
1031 if (c->backup)
1032 free(c->backup);
1033
1034 free(c);
1035
1036 c = next;
1037 }
1038
1039 target->working_areas = NULL;
1040 }
1041
1042 void target_free_all_working_areas(struct target_s *target)
1043 {
1044 target_free_all_working_areas_restore(target, 1);
1045 }
1046
1047 int target_register_commands(struct command_context_s *cmd_ctx)
1048 {
1049
1050 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1051
1052
1053
1054
1055 register_jim(cmd_ctx, "target", jim_target, "configure target" );
1056
1057 return ERROR_OK;
1058 }
1059
1060 int target_arch_state(struct target_s *target)
1061 {
1062 int retval;
1063 if (target==NULL)
1064 {
1065 LOG_USER("No target has been configured");
1066 return ERROR_OK;
1067 }
1068
1069 LOG_USER("target state: %s",
1070 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1071
1072 if (target->state!=TARGET_HALTED)
1073 return ERROR_OK;
1074
1075 retval=target->type->arch_state(target);
1076 return retval;
1077 }
1078
1079 /* Single aligned words are guaranteed to use 16 or 32 bit access
1080 * mode respectively, otherwise data is handled as quickly as
1081 * possible
1082 */
1083 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1084 {
1085 int retval;
1086 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1087
1088 if (!target_was_examined(target))
1089 {
1090 LOG_ERROR("Target not examined yet");
1091 return ERROR_FAIL;
1092 }
1093
1094 if (size == 0) {
1095 return ERROR_OK;
1096 }
1097
1098 if ((address + size - 1) < address)
1099 {
1100 /* GDB can request this when e.g. PC is 0xfffffffc*/
1101 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1102 return ERROR_FAIL;
1103 }
1104
1105 if (((address % 2) == 0) && (size == 2))
1106 {
1107 return target_write_memory(target, address, 2, 1, buffer);
1108 }
1109
1110 /* handle unaligned head bytes */
1111 if (address % 4)
1112 {
1113 u32 unaligned = 4 - (address % 4);
1114
1115 if (unaligned > size)
1116 unaligned = size;
1117
1118 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1119 return retval;
1120
1121 buffer += unaligned;
1122 address += unaligned;
1123 size -= unaligned;
1124 }
1125
1126 /* handle aligned words */
1127 if (size >= 4)
1128 {
1129 int aligned = size - (size % 4);
1130
1131 /* use bulk writes above a certain limit. This may have to be changed */
1132 if (aligned > 128)
1133 {
1134 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1135 return retval;
1136 }
1137 else
1138 {
1139 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1140 return retval;
1141 }
1142
1143 buffer += aligned;
1144 address += aligned;
1145 size -= aligned;
1146 }
1147
1148 /* handle tail writes of less than 4 bytes */
1149 if (size > 0)
1150 {
1151 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1152 return retval;
1153 }
1154
1155 return ERROR_OK;
1156 }
1157
1158 /* Single aligned words are guaranteed to use 16 or 32 bit access
1159 * mode respectively, otherwise data is handled as quickly as
1160 * possible
1161 */
1162 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1163 {
1164 int retval;
1165 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1166
1167 if (!target_was_examined(target))
1168 {
1169 LOG_ERROR("Target not examined yet");
1170 return ERROR_FAIL;
1171 }
1172
1173 if (size == 0) {
1174 return ERROR_OK;
1175 }
1176
1177 if ((address + size - 1) < address)
1178 {
1179 /* GDB can request this when e.g. PC is 0xfffffffc*/
1180 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1181 return ERROR_FAIL;
1182 }
1183
1184 if (((address % 2) == 0) && (size == 2))
1185 {
1186 return target_read_memory(target, address, 2, 1, buffer);
1187 }
1188
1189 /* handle unaligned head bytes */
1190 if (address % 4)
1191 {
1192 u32 unaligned = 4 - (address % 4);
1193
1194 if (unaligned > size)
1195 unaligned = size;
1196
1197 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1198 return retval;
1199
1200 buffer += unaligned;
1201 address += unaligned;
1202 size -= unaligned;
1203 }
1204
1205 /* handle aligned words */
1206 if (size >= 4)
1207 {
1208 int aligned = size - (size % 4);
1209
1210 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1211 return retval;
1212
1213 buffer += aligned;
1214 address += aligned;
1215 size -= aligned;
1216 }
1217
1218 /* handle tail writes of less than 4 bytes */
1219 if (size > 0)
1220 {
1221 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1222 return retval;
1223 }
1224
1225 return ERROR_OK;
1226 }
1227
1228 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1229 {
1230 u8 *buffer;
1231 int retval;
1232 u32 i;
1233 u32 checksum = 0;
1234 if (!target_was_examined(target))
1235 {
1236 LOG_ERROR("Target not examined yet");
1237 return ERROR_FAIL;
1238 }
1239
1240 if ((retval = target->type->checksum_memory(target, address,
1241 size, &checksum)) != ERROR_OK)
1242 {
1243 buffer = malloc(size);
1244 if (buffer == NULL)
1245 {
1246 LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1247 return ERROR_INVALID_ARGUMENTS;
1248 }
1249 retval = target_read_buffer(target, address, size, buffer);
1250 if (retval != ERROR_OK)
1251 {
1252 free(buffer);
1253 return retval;
1254 }
1255
1256 /* convert to target endianess */
1257 for (i = 0; i < (size/sizeof(u32)); i++)
1258 {
1259 u32 target_data;
1260 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1261 target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1262 }
1263
1264 retval = image_calculate_checksum( buffer, size, &checksum );
1265 free(buffer);
1266 }
1267
1268 *crc = checksum;
1269
1270 return retval;
1271 }
1272
1273 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1274 {
1275 int retval;
1276 if (!target_was_examined(target))
1277 {
1278 LOG_ERROR("Target not examined yet");
1279 return ERROR_FAIL;
1280 }
1281
1282 if (target->type->blank_check_memory == 0)
1283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284
1285 retval = target->type->blank_check_memory(target, address, size, blank);
1286
1287 return retval;
1288 }
1289
1290 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1291 {
1292 u8 value_buf[4];
1293 if (!target_was_examined(target))
1294 {
1295 LOG_ERROR("Target not examined yet");
1296 return ERROR_FAIL;
1297 }
1298
1299 int retval = target_read_memory(target, address, 4, 1, value_buf);
1300
1301 if (retval == ERROR_OK)
1302 {
1303 *value = target_buffer_get_u32(target, value_buf);
1304 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1305 }
1306 else
1307 {
1308 *value = 0x0;
1309 LOG_DEBUG("address: 0x%8.8x failed", address);
1310 }
1311
1312 return retval;
1313 }
1314
1315 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1316 {
1317 u8 value_buf[2];
1318 if (!target_was_examined(target))
1319 {
1320 LOG_ERROR("Target not examined yet");
1321 return ERROR_FAIL;
1322 }
1323
1324 int retval = target_read_memory(target, address, 2, 1, value_buf);
1325
1326 if (retval == ERROR_OK)
1327 {
1328 *value = target_buffer_get_u16(target, value_buf);
1329 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1330 }
1331 else
1332 {
1333 *value = 0x0;
1334 LOG_DEBUG("address: 0x%8.8x failed", address);
1335 }
1336
1337 return retval;
1338 }
1339
1340 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1341 {
1342 int retval = target_read_memory(target, address, 1, 1, value);
1343 if (!target_was_examined(target))
1344 {
1345 LOG_ERROR("Target not examined yet");
1346 return ERROR_FAIL;
1347 }
1348
1349 if (retval == ERROR_OK)
1350 {
1351 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1352 }
1353 else
1354 {
1355 *value = 0x0;
1356 LOG_DEBUG("address: 0x%8.8x failed", address);
1357 }
1358
1359 return retval;
1360 }
1361
1362 int target_write_u32(struct target_s *target, u32 address, u32 value)
1363 {
1364 int retval;
1365 u8 value_buf[4];
1366 if (!target_was_examined(target))
1367 {
1368 LOG_ERROR("Target not examined yet");
1369 return ERROR_FAIL;
1370 }
1371
1372 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1373
1374 target_buffer_set_u32(target, value_buf, value);
1375 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1376 {
1377 LOG_DEBUG("failed: %i", retval);
1378 }
1379
1380 return retval;
1381 }
1382
1383 int target_write_u16(struct target_s *target, u32 address, u16 value)
1384 {
1385 int retval;
1386 u8 value_buf[2];
1387 if (!target_was_examined(target))
1388 {
1389 LOG_ERROR("Target not examined yet");
1390 return ERROR_FAIL;
1391 }
1392
1393 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1394
1395 target_buffer_set_u16(target, value_buf, value);
1396 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1397 {
1398 LOG_DEBUG("failed: %i", retval);
1399 }
1400
1401 return retval;
1402 }
1403
1404 int target_write_u8(struct target_s *target, u32 address, u8 value)
1405 {
1406 int retval;
1407 if (!target_was_examined(target))
1408 {
1409 LOG_ERROR("Target not examined yet");
1410 return ERROR_FAIL;
1411 }
1412
1413 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1414
1415 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1416 {
1417 LOG_DEBUG("failed: %i", retval);
1418 }
1419
1420 return retval;
1421 }
1422
1423 int target_register_user_commands(struct command_context_s *cmd_ctx)
1424 {
1425 int retval = ERROR_OK;
1426
1427
1428 /* script procedures */
1429 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1430 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1431 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1432
1433 register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1434 "same args as load_image, image stored in memory - mainly for profiling purposes");
1435
1436 register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1437 "loads active fast load image to current target - mainly for profiling purposes");
1438
1439
1440 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1441 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1442 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1443 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1444 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1445 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1446 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1447 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1448 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1449
1450 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1451 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1452 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1453
1454 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1455 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1456 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1457
1458 register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1459 register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1460 register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1461 register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1462
1463 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1464 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1465 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1466 register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1467
1468 if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1469 return retval;
1470 if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1471 return retval;
1472
1473 return retval;
1474 }
1475
1476 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 {
1478 target_t *target = all_targets;
1479
1480 if (argc == 1)
1481 {
1482 target = get_target(args[0]);
1483 if (target == NULL) {
1484 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1485 goto DumpTargets;
1486 }
1487 if (!target->tap->enabled) {
1488 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1489 "can't be the current target\n",
1490 target->tap->dotted_name);
1491 return ERROR_FAIL;
1492 }
1493
1494 cmd_ctx->current_target = target->target_number;
1495 return ERROR_OK;
1496 }
1497 DumpTargets:
1498
1499 target = all_targets;
1500 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1501 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1502 while (target)
1503 {
1504 const char *state;
1505 char marker = ' ';
1506
1507 if (target->tap->enabled)
1508 state = Jim_Nvp_value2name_simple(nvp_target_state,
1509 target->state)->name;
1510 else
1511 state = "tap-disabled";
1512
1513 if (cmd_ctx->current_target == target->target_number)
1514 marker = '*';
1515
1516 /* keep columns lined up to match the headers above */
1517 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1518 target->target_number,
1519 marker,
1520 target->cmd_name,
1521 target_get_name(target),
1522 Jim_Nvp_value2name_simple(nvp_target_endian,
1523 target->endianness)->name,
1524 target->tap->dotted_name,
1525 state);
1526 target = target->next;
1527 }
1528
1529 return ERROR_OK;
1530 }
1531
1532 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1533
1534 static int powerDropout;
1535 static int srstAsserted;
1536
1537 static int runPowerRestore;
1538 static int runPowerDropout;
1539 static int runSrstAsserted;
1540 static int runSrstDeasserted;
1541
1542 static int sense_handler(void)
1543 {
1544 static int prevSrstAsserted = 0;
1545 static int prevPowerdropout = 0;
1546
1547 int retval;
1548 if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1549 return retval;
1550
1551 int powerRestored;
1552 powerRestored = prevPowerdropout && !powerDropout;
1553 if (powerRestored)
1554 {
1555 runPowerRestore = 1;
1556 }
1557
1558 long long current = timeval_ms();
1559 static long long lastPower = 0;
1560 int waitMore = lastPower + 2000 > current;
1561 if (powerDropout && !waitMore)
1562 {
1563 runPowerDropout = 1;
1564 lastPower = current;
1565 }
1566
1567 if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1568 return retval;
1569
1570 int srstDeasserted;
1571 srstDeasserted = prevSrstAsserted && !srstAsserted;
1572
1573 static long long lastSrst = 0;
1574 waitMore = lastSrst + 2000 > current;
1575 if (srstDeasserted && !waitMore)
1576 {
1577 runSrstDeasserted = 1;
1578 lastSrst = current;
1579 }
1580
1581 if (!prevSrstAsserted && srstAsserted)
1582 {
1583 runSrstAsserted = 1;
1584 }
1585
1586 prevSrstAsserted = srstAsserted;
1587 prevPowerdropout = powerDropout;
1588
1589 if (srstDeasserted || powerRestored)
1590 {
1591 /* Other than logging the event we can't do anything here.
1592 * Issuing a reset is a particularly bad idea as we might
1593 * be inside a reset already.
1594 */
1595 }
1596
1597 return ERROR_OK;
1598 }
1599
1600 /* process target state changes */
1601 int handle_target(void *priv)
1602 {
1603 int retval = ERROR_OK;
1604
1605 /* we do not want to recurse here... */
1606 static int recursive = 0;
1607 if (! recursive)
1608 {
1609 recursive = 1;
1610 sense_handler();
1611 /* danger! running these procedures can trigger srst assertions and power dropouts.
1612 * We need to avoid an infinite loop/recursion here and we do that by
1613 * clearing the flags after running these events.
1614 */
1615 int did_something = 0;
1616 if (runSrstAsserted)
1617 {
1618 Jim_Eval( interp, "srst_asserted");
1619 did_something = 1;
1620 }
1621 if (runSrstDeasserted)
1622 {
1623 Jim_Eval( interp, "srst_deasserted");
1624 did_something = 1;
1625 }
1626 if (runPowerDropout)
1627 {
1628 Jim_Eval( interp, "power_dropout");
1629 did_something = 1;
1630 }
1631 if (runPowerRestore)
1632 {
1633 Jim_Eval( interp, "power_restore");
1634 did_something = 1;
1635 }
1636
1637 if (did_something)
1638 {
1639 /* clear detect flags */
1640 sense_handler();
1641 }
1642
1643 /* clear action flags */
1644
1645 runSrstAsserted=0;
1646 runSrstDeasserted=0;
1647 runPowerRestore=0;
1648 runPowerDropout=0;
1649
1650 recursive = 0;
1651 }
1652
1653 target_t *target = all_targets;
1654
1655 while (target)
1656 {
1657
1658 /* only poll target if we've got power and srst isn't asserted */
1659 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1660 {
1661 /* polling may fail silently until the target has been examined */
1662 if((retval = target_poll(target)) != ERROR_OK)
1663 return retval;
1664 }
1665
1666 target = target->next;
1667 }
1668
1669 return retval;
1670 }
1671
1672 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1673 {
1674 target_t *target;
1675 reg_t *reg = NULL;
1676 int count = 0;
1677 char *value;
1678
1679 LOG_DEBUG("-");
1680
1681 target = get_current_target(cmd_ctx);
1682
1683 /* list all available registers for the current target */
1684 if (argc == 0)
1685 {
1686 reg_cache_t *cache = target->reg_cache;
1687
1688 count = 0;
1689 while(cache)
1690 {
1691 int i;
1692 for (i = 0; i < cache->num_regs; i++)
1693 {
1694 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1695 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1696 free(value);
1697 }
1698 cache = cache->next;
1699 }
1700
1701 return ERROR_OK;
1702 }
1703
1704 /* access a single register by its ordinal number */
1705 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1706 {
1707 unsigned num;
1708 int retval = parse_uint(args[0], &num);
1709 if (ERROR_OK != retval)
1710 return ERROR_COMMAND_SYNTAX_ERROR;
1711
1712 reg_cache_t *cache = target->reg_cache;
1713 count = 0;
1714 while(cache)
1715 {
1716 int i;
1717 for (i = 0; i < cache->num_regs; i++)
1718 {
1719 if (count++ == (int)num)
1720 {
1721 reg = &cache->reg_list[i];
1722 break;
1723 }
1724 }
1725 if (reg)
1726 break;
1727 cache = cache->next;
1728 }
1729
1730 if (!reg)
1731 {
1732 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1733 return ERROR_OK;
1734 }
1735 } else /* access a single register by its name */
1736 {
1737 reg = register_get_by_name(target->reg_cache, args[0], 1);
1738
1739 if (!reg)
1740 {
1741 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1742 return ERROR_OK;
1743 }
1744 }
1745
1746 /* display a register */
1747 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1748 {
1749 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1750 reg->valid = 0;
1751
1752 if (reg->valid == 0)
1753 {
1754 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1755 arch_type->get(reg);
1756 }
1757 value = buf_to_str(reg->value, reg->size, 16);
1758 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1759 free(value);
1760 return ERROR_OK;
1761 }
1762
1763 /* set register value */
1764 if (argc == 2)
1765 {
1766 u8 *buf = malloc(CEIL(reg->size, 8));
1767 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1768
1769 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1770 arch_type->set(reg, buf);
1771
1772 value = buf_to_str(reg->value, reg->size, 16);
1773 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1774 free(value);
1775
1776 free(buf);
1777
1778 return ERROR_OK;
1779 }
1780
1781 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1782
1783 return ERROR_OK;
1784 }
1785
1786 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1787 {
1788 int retval = ERROR_OK;
1789 target_t *target = get_current_target(cmd_ctx);
1790
1791 if (argc == 0)
1792 {
1793 command_print(cmd_ctx, "background polling: %s",
1794 target_continous_poll ? "on" : "off");
1795 if ((retval = target_poll(target)) != ERROR_OK)
1796 return retval;
1797 if ((retval = target_arch_state(target)) != ERROR_OK)
1798 return retval;
1799
1800 }
1801 else if (argc==1)
1802 {
1803 if (strcmp(args[0], "on") == 0)
1804 {
1805 target_continous_poll = 1;
1806 }
1807 else if (strcmp(args[0], "off") == 0)
1808 {
1809 target_continous_poll = 0;
1810 }
1811 else
1812 {
1813 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1814 }
1815 } else
1816 {
1817 return ERROR_COMMAND_SYNTAX_ERROR;
1818 }
1819
1820 return retval;
1821 }
1822
1823 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1824 {
1825 if (argc > 1)
1826 return ERROR_COMMAND_SYNTAX_ERROR;
1827
1828 unsigned ms = 5000;
1829 if (1 == argc)
1830 {
1831 int retval = parse_uint(args[0], &ms);
1832 if (ERROR_OK != retval)
1833 {
1834 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1835 return ERROR_COMMAND_SYNTAX_ERROR;
1836 }
1837 // convert seconds (given) to milliseconds (needed)
1838 ms *= 1000;
1839 }
1840
1841 target_t *target = get_current_target(cmd_ctx);
1842 return target_wait_state(target, TARGET_HALTED, ms);
1843 }
1844
1845 /* wait for target state to change. The trick here is to have a low
1846 * latency for short waits and not to suck up all the CPU time
1847 * on longer waits.
1848 *
1849 * After 500ms, keep_alive() is invoked
1850 */
1851 int target_wait_state(target_t *target, enum target_state state, int ms)
1852 {
1853 int retval;
1854 long long then=0, cur;
1855 int once=1;
1856
1857 for (;;)
1858 {
1859 if ((retval=target_poll(target))!=ERROR_OK)
1860 return retval;
1861 if (target->state == state)
1862 {
1863 break;
1864 }
1865 cur = timeval_ms();
1866 if (once)
1867 {
1868 once=0;
1869 then = timeval_ms();
1870 LOG_DEBUG("waiting for target %s...",
1871 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1872 }
1873
1874 if (cur-then>500)
1875 {
1876 keep_alive();
1877 }
1878
1879 if ((cur-then)>ms)
1880 {
1881 LOG_ERROR("timed out while waiting for target %s",
1882 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1883 return ERROR_FAIL;
1884 }
1885 }
1886
1887 return ERROR_OK;
1888 }
1889
1890 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1891 {
1892 LOG_DEBUG("-");
1893
1894 target_t *target = get_current_target(cmd_ctx);
1895 int retval = target_halt(target);
1896 if (ERROR_OK != retval)
1897 return retval;
1898
1899 if (argc == 1)
1900 {
1901 unsigned wait;
1902 retval = parse_uint(args[0], &wait);
1903 if (ERROR_OK != retval)
1904 return ERROR_COMMAND_SYNTAX_ERROR;
1905 if (!wait)
1906 return ERROR_OK;
1907 }
1908
1909 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1910 }
1911
1912 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1913 {
1914 target_t *target = get_current_target(cmd_ctx);
1915
1916 LOG_USER("requesting target halt and executing a soft reset");
1917
1918 target->type->soft_reset_halt(target);
1919
1920 return ERROR_OK;
1921 }
1922
1923 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1924 {
1925 if (argc > 1)
1926 return ERROR_COMMAND_SYNTAX_ERROR;
1927
1928 enum target_reset_mode reset_mode = RESET_RUN;
1929 if (argc == 1)
1930 {
1931 const Jim_Nvp *n;
1932 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1933 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1934 return ERROR_COMMAND_SYNTAX_ERROR;
1935 }
1936 reset_mode = n->value;
1937 }
1938
1939 /* reset *all* targets */
1940 return target_process_reset(cmd_ctx, reset_mode);
1941 }
1942
1943
1944 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1945 {
1946 if (argc > 1)
1947 return ERROR_COMMAND_SYNTAX_ERROR;
1948
1949 target_t *target = get_current_target(cmd_ctx);
1950 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1951
1952 /* with no args, resume from current pc, addr = 0,
1953 * with one arguments, addr = args[0],
1954 * handle breakpoints, not debugging */
1955 u32 addr = 0;
1956 if (argc == 1)
1957 {
1958 int retval = parse_u32(args[0], &addr);
1959 if (ERROR_OK != retval)
1960 return retval;
1961 }
1962
1963 return target_resume(target, 0, addr, 1, 0);
1964 }
1965
1966 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1967 {
1968 if (argc > 1)
1969 return ERROR_COMMAND_SYNTAX_ERROR;
1970
1971 LOG_DEBUG("-");
1972
1973 /* with no args, step from current pc, addr = 0,
1974 * with one argument addr = args[0],
1975 * handle breakpoints, debugging */
1976 u32 addr = 0;
1977 if (argc == 1)
1978 {
1979 int retval = parse_u32(args[0], &addr);
1980 if (ERROR_OK != retval)
1981 return retval;
1982 }
1983
1984 target_t *target = get_current_target(cmd_ctx);
1985 return target->type->step(target, 0, addr, 1);
1986 }
1987
1988 static void handle_md_output(struct command_context_s *cmd_ctx,
1989 struct target_s *target, u32 address, unsigned size,
1990 unsigned count, const u8 *buffer)
1991 {
1992 const unsigned line_bytecnt = 32;
1993 unsigned line_modulo = line_bytecnt / size;
1994
1995 char output[line_bytecnt * 4 + 1];
1996 unsigned output_len = 0;
1997
1998 const char *value_fmt;
1999 switch (size) {
2000 case 4: value_fmt = "%8.8x "; break;
2001 case 2: value_fmt = "%4.2x "; break;
2002 case 1: value_fmt = "%2.2x "; break;
2003 default:
2004 LOG_ERROR("invalid memory read size: %u", size);
2005 exit(-1);
2006 }
2007
2008 for (unsigned i = 0; i < count; i++)
2009 {
2010 if (i % line_modulo == 0)
2011 {
2012 output_len += snprintf(output + output_len,
2013 sizeof(output) - output_len,
2014 "0x%8.8x: ", address + (i*size));
2015 }
2016
2017 u32 value=0;
2018 const u8 *value_ptr = buffer + i * size;
2019 switch (size) {
2020 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2021 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2022 case 1: value = *value_ptr;
2023 }
2024 output_len += snprintf(output + output_len,
2025 sizeof(output) - output_len,
2026 value_fmt, value);
2027
2028 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2029 {
2030 command_print(cmd_ctx, "%s", output);
2031 output_len = 0;
2032 }
2033 }
2034 }
2035
2036 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2037 {
2038 if (argc < 1)
2039 return ERROR_COMMAND_SYNTAX_ERROR;
2040
2041 unsigned size = 0;
2042 switch (cmd[2]) {
2043 case 'w': size = 4; break;
2044 case 'h': size = 2; break;
2045 case 'b': size = 1; break;
2046 default: return ERROR_COMMAND_SYNTAX_ERROR;
2047 }
2048
2049 u32 address;
2050 int retval = parse_u32(args[0], &address);
2051 if (ERROR_OK != retval)
2052 return retval;
2053
2054 unsigned count = 1;
2055 if (argc == 2)
2056 {
2057 retval = parse_uint(args[1], &count);
2058 if (ERROR_OK != retval)
2059 return retval;
2060 }
2061
2062 u8 *buffer = calloc(count, size);
2063
2064 target_t *target = get_current_target(cmd_ctx);
2065 retval = target_read_memory(target,
2066 address, size, count, buffer);
2067 if (ERROR_OK == retval)
2068 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2069
2070 free(buffer);
2071
2072 return retval;
2073 }
2074
2075 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2076 {
2077 if ((argc < 2) || (argc > 3))
2078 return ERROR_COMMAND_SYNTAX_ERROR;
2079
2080 u32 address;
2081 int retval = parse_u32(args[0], &address);
2082 if (ERROR_OK != retval)
2083 return retval;
2084
2085 u32 value;
2086 retval = parse_u32(args[1], &value);
2087 if (ERROR_OK != retval)
2088 return retval;
2089
2090 unsigned count = 1;
2091 if (argc == 3)
2092 {
2093 retval = parse_uint(args[2], &count);
2094 if (ERROR_OK != retval)
2095 return retval;
2096 }
2097
2098 target_t *target = get_current_target(cmd_ctx);
2099 unsigned wordsize;
2100 u8 value_buf[4];
2101 switch (cmd[2])
2102 {
2103 case 'w':
2104 wordsize = 4;
2105 target_buffer_set_u32(target, value_buf, value);
2106 break;
2107 case 'h':
2108 wordsize = 2;
2109 target_buffer_set_u16(target, value_buf, value);
2110 break;
2111 case 'b':
2112 wordsize = 1;
2113 value_buf[0] = value;
2114 break;
2115 default:
2116 return ERROR_COMMAND_SYNTAX_ERROR;
2117 }
2118 for (unsigned i = 0; i < count; i++)
2119 {
2120 retval = target_write_memory(target,
2121 address + i * wordsize, wordsize, 1, value_buf);
2122 if (ERROR_OK != retval)
2123 return retval;
2124 keep_alive();
2125 }
2126
2127 return ERROR_OK;
2128
2129 }
2130
2131 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2132 {
2133 u8 *buffer;
2134 u32 buf_cnt;
2135 u32 image_size;
2136 u32 min_address=0;
2137 u32 max_address=0xffffffff;
2138 int i;
2139 int retval, retvaltemp;
2140
2141 image_t image;
2142
2143 duration_t duration;
2144 char *duration_text;
2145
2146 target_t *target = get_current_target(cmd_ctx);
2147
2148 if ((argc < 1)||(argc > 5))
2149 {
2150 return ERROR_COMMAND_SYNTAX_ERROR;
2151 }
2152
2153 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2154 if (argc >= 2)
2155 {
2156 u32 addr;
2157 retval = parse_u32(args[1], &addr);
2158 if (ERROR_OK != retval)
2159 return ERROR_COMMAND_SYNTAX_ERROR;
2160 image.base_address = addr;
2161 image.base_address_set = 1;
2162 }
2163 else
2164 {
2165 image.base_address_set = 0;
2166 }
2167
2168
2169 image.start_address_set = 0;
2170
2171 if (argc>=4)
2172 {
2173 retval = parse_u32(args[3], &min_address);
2174 if (ERROR_OK != retval)
2175 return ERROR_COMMAND_SYNTAX_ERROR;
2176 }
2177 if (argc>=5)
2178 {
2179 retval = parse_u32(args[4], &max_address);
2180 if (ERROR_OK != retval)
2181 return ERROR_COMMAND_SYNTAX_ERROR;
2182 // use size (given) to find max (required)
2183 max_address += min_address;
2184 }
2185
2186 if (min_address>max_address)
2187 {
2188 return ERROR_COMMAND_SYNTAX_ERROR;
2189 }
2190
2191 duration_start_measure(&duration);
2192
2193 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2194 {
2195 return ERROR_OK;
2196 }
2197
2198 image_size = 0x0;
2199 retval = ERROR_OK;
2200 for (i = 0; i < image.num_sections; i++)
2201 {
2202 buffer = malloc(image.sections[i].size);
2203 if (buffer == NULL)
2204 {
2205 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2206 break;
2207 }
2208
2209 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2210 {
2211 free(buffer);
2212 break;
2213 }
2214
2215 u32 offset=0;
2216 u32 length=buf_cnt;
2217
2218 /* DANGER!!! beware of unsigned comparision here!!! */
2219
2220 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2221 (image.sections[i].base_address<max_address))
2222 {
2223 if (image.sections[i].base_address<min_address)
2224 {
2225 /* clip addresses below */
2226 offset+=min_address-image.sections[i].base_address;
2227 length-=offset;
2228 }
2229
2230 if (image.sections[i].base_address+buf_cnt>max_address)
2231 {
2232 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2233 }
2234
2235 if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2236 {
2237 free(buffer);
2238 break;
2239 }
2240 image_size += length;
2241 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2242 }
2243
2244 free(buffer);
2245 }
2246
2247 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2248 {
2249 image_close(&image);
2250 return retvaltemp;
2251 }
2252
2253 if (retval==ERROR_OK)
2254 {
2255 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2256 }
2257 free(duration_text);
2258
2259 image_close(&image);
2260
2261 return retval;
2262
2263 }
2264
2265 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2266 {
2267 fileio_t fileio;
2268
2269 u32 address;
2270 u32 size;
2271 u8 buffer[560];
2272 int retval=ERROR_OK, retvaltemp;
2273
2274 duration_t duration;
2275 char *duration_text;
2276
2277 target_t *target = get_current_target(cmd_ctx);
2278
2279 if (argc != 3)
2280 {
2281 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2282 return ERROR_OK;
2283 }
2284
2285 address = strtoul(args[1], NULL, 0);
2286 size = strtoul(args[2], NULL, 0);
2287
2288 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2289 {
2290 return ERROR_OK;
2291 }
2292
2293 duration_start_measure(&duration);
2294
2295 while (size > 0)
2296 {
2297 u32 size_written;
2298 u32 this_run_size = (size > 560) ? 560 : size;
2299
2300 retval = target_read_buffer(target, address, this_run_size, buffer);
2301 if (retval != ERROR_OK)
2302 {
2303 break;
2304 }
2305
2306 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2307 if (retval != ERROR_OK)
2308 {
2309 break;
2310 }
2311
2312 size -= this_run_size;
2313 address += this_run_size;
2314 }
2315
2316 if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2317 return retvaltemp;
2318
2319 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2320 return retvaltemp;
2321
2322 if (retval==ERROR_OK)
2323 {
2324 command_print(cmd_ctx, "dumped %lld byte in %s",
2325 fileio.size, duration_text);
2326 free(duration_text);
2327 }
2328
2329 return retval;
2330 }
2331
2332 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2333 {
2334 u8 *buffer;
2335 u32 buf_cnt;
2336 u32 image_size;
2337 int i;
2338 int retval, retvaltemp;
2339 u32 checksum = 0;
2340 u32 mem_checksum = 0;
2341
2342 image_t image;
2343
2344 duration_t duration;
2345 char *duration_text;
2346
2347 target_t *target = get_current_target(cmd_ctx);
2348
2349 if (argc < 1)
2350 {
2351 return ERROR_COMMAND_SYNTAX_ERROR;
2352 }
2353
2354 if (!target)
2355 {
2356 LOG_ERROR("no target selected");
2357 return ERROR_FAIL;
2358 }
2359
2360 duration_start_measure(&duration);
2361
2362 if (argc >= 2)
2363 {
2364 image.base_address_set = 1;
2365 image.base_address = strtoul(args[1], NULL, 0);
2366 }
2367 else
2368 {
2369 image.base_address_set = 0;
2370 image.base_address = 0x0;
2371 }
2372
2373 image.start_address_set = 0;
2374
2375 if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2376 {
2377 return retval;
2378 }
2379
2380 image_size = 0x0;
2381 retval=ERROR_OK;
2382 for (i = 0; i < image.num_sections; i++)
2383 {
2384 buffer = malloc(image.sections[i].size);
2385 if (buffer == NULL)
2386 {
2387 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2388 break;
2389 }
2390 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2391 {
2392 free(buffer);
2393 break;
2394 }
2395
2396 if (verify)
2397 {
2398 /* calculate checksum of image */
2399 image_calculate_checksum( buffer, buf_cnt, &checksum );
2400
2401 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2402 if( retval != ERROR_OK )
2403 {
2404 free(buffer);
2405 break;
2406 }
2407
2408 if( checksum != mem_checksum )
2409 {
2410 /* failed crc checksum, fall back to a binary compare */
2411 u8 *data;
2412
2413 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2414
2415 data = (u8*)malloc(buf_cnt);
2416
2417 /* Can we use 32bit word accesses? */
2418 int size = 1;
2419 int count = buf_cnt;
2420 if ((count % 4) == 0)
2421 {
2422 size *= 4;
2423 count /= 4;
2424 }
2425 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2426 if (retval == ERROR_OK)
2427 {
2428 u32 t;
2429 for (t = 0; t < buf_cnt; t++)
2430 {
2431 if (data[t] != buffer[t])
2432 {
2433 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2434 free(data);
2435 free(buffer);
2436 retval=ERROR_FAIL;
2437 goto done;
2438 }
2439 if ((t%16384)==0)
2440 {
2441 keep_alive();
2442 }
2443 }
2444 }
2445
2446 free(data);
2447 }
2448 } else
2449 {
2450 command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2451 }
2452
2453 free(buffer);
2454 image_size += buf_cnt;
2455 }
2456 done:
2457
2458 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2459 {
2460 image_close(&image);
2461 return retvaltemp;
2462 }
2463
2464 if (retval==ERROR_OK)
2465 {
2466 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2467 }
2468 free(duration_text);
2469
2470 image_close(&image);
2471
2472 return retval;
2473 }
2474
2475 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2476 {
2477 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2478 }
2479
2480 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2481 {
2482 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2483 }
2484
2485 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2486 {
2487 target_t *target = get_current_target(cmd_ctx);
2488 breakpoint_t *breakpoint = target->breakpoints;
2489 while (breakpoint)
2490 {
2491 if (breakpoint->type == BKPT_SOFT)
2492 {
2493 char* buf = buf_to_str(breakpoint->orig_instr,
2494 breakpoint->length, 16);
2495 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2496 breakpoint->address, breakpoint->length,
2497 breakpoint->set, buf);
2498 free(buf);
2499 }
2500 else
2501 {
2502 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2503 breakpoint->address, breakpoint->length, breakpoint->set);
2504 }
2505
2506 breakpoint = breakpoint->next;
2507 }
2508 return ERROR_OK;
2509 }
2510
2511 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2512 u32 addr, u32 length, int hw)
2513 {
2514 target_t *target = get_current_target(cmd_ctx);
2515 int retval = breakpoint_add(target, addr, length, hw);
2516 if (ERROR_OK == retval)
2517 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2518 else
2519 LOG_ERROR("Failure setting breakpoint");
2520 return retval;
2521 }
2522
2523 static int handle_bp_command(struct command_context_s *cmd_ctx,
2524 char *cmd, char **args, int argc)
2525 {
2526 if (argc == 0)
2527 return handle_bp_command_list(cmd_ctx);
2528
2529 if (argc < 2 || argc > 3)
2530 {
2531 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2532 return ERROR_COMMAND_SYNTAX_ERROR;
2533 }
2534
2535 u32 addr = strtoul(args[0], NULL, 0);
2536 u32 length = strtoul(args[1], NULL, 0);
2537
2538 int hw = BKPT_SOFT;
2539 if (argc == 3)
2540 {
2541 if (strcmp(args[2], "hw") == 0)
2542 hw = BKPT_HARD;
2543 else
2544 return ERROR_COMMAND_SYNTAX_ERROR;
2545 }
2546
2547 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2548 }
2549
2550 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2551 {
2552 target_t *target = get_current_target(cmd_ctx);
2553
2554 if (argc > 0)
2555 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2556
2557 return ERROR_OK;
2558 }
2559
2560 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2561 {
2562 target_t *target = get_current_target(cmd_ctx);
2563 int retval;
2564
2565 if (argc == 0)
2566 {
2567 watchpoint_t *watchpoint = target->watchpoints;
2568
2569 while (watchpoint)
2570 {
2571 command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2572 watchpoint = watchpoint->next;
2573 }
2574 }
2575 else if (argc >= 2)
2576 {
2577 enum watchpoint_rw type = WPT_ACCESS;
2578 u32 data_value = 0x0;
2579 u32 data_mask = 0xffffffff;
2580
2581 if (argc >= 3)
2582 {
2583 switch(args[2][0])
2584 {
2585 case 'r':
2586 type = WPT_READ;
2587 break;
2588 case 'w':
2589 type = WPT_WRITE;
2590 break;
2591 case 'a':
2592 type = WPT_ACCESS;
2593 break;
2594 default:
2595 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2596 return ERROR_OK;
2597 }
2598 }
2599 if (argc >= 4)
2600 {
2601 data_value = strtoul(args[3], NULL, 0);
2602 }
2603 if (argc >= 5)
2604 {
2605 data_mask = strtoul(args[4], NULL, 0);
2606 }
2607
2608 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2609 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2610 {
2611 LOG_ERROR("Failure setting breakpoints");
2612 }
2613 }
2614 else
2615 {
2616 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2617 }
2618
2619 return ERROR_OK;
2620 }
2621
2622 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2623 {
2624 if (argc != 1)
2625 return ERROR_COMMAND_SYNTAX_ERROR;
2626
2627 target_t *target = get_current_target(cmd_ctx);
2628 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2629
2630 return ERROR_OK;
2631 }
2632
2633
2634 /**
2635 * Translate a virtual address to a physical address.
2636 *
2637 * The low-level target implementation must have logged a detailed error
2638 * which is forwarded to telnet/GDB session.
2639 */
2640 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2641 char *cmd, char **args, int argc)
2642 {
2643 if (argc != 1)
2644 return ERROR_COMMAND_SYNTAX_ERROR;
2645
2646 target_t *target = get_current_target(cmd_ctx);
2647 u32 va = strtoul(args[0], NULL, 0);
2648 u32 pa;
2649
2650 int retval = target->type->virt2phys(target, va, &pa);
2651 if (retval == ERROR_OK)
2652 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2653
2654 return retval;
2655 }
2656
2657 static void writeData(FILE *f, const void *data, size_t len)
2658 {
2659 size_t written = fwrite(data, 1, len, f);
2660 if (written != len)
2661 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2662 }
2663
2664 static void writeLong(FILE *f, int l)
2665 {
2666 int i;
2667 for (i=0; i<4; i++)
2668 {
2669 char c=(l>>(i*8))&0xff;
2670 writeData(f, &c, 1);
2671 }
2672
2673 }
2674
2675 static void writeString(FILE *f, char *s)
2676 {
2677 writeData(f, s, strlen(s));
2678 }
2679
2680 /* Dump a gmon.out histogram file. */
2681 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2682 {
2683 u32 i;
2684 FILE *f=fopen(filename, "w");
2685 if (f==NULL)
2686 return;
2687 writeString(f, "gmon");
2688 writeLong(f, 0x00000001); /* Version */
2689 writeLong(f, 0); /* padding */
2690 writeLong(f, 0); /* padding */
2691 writeLong(f, 0); /* padding */
2692
2693 u8 zero = 0; /* GMON_TAG_TIME_HIST */
2694 writeData(f, &zero, 1);
2695
2696 /* figure out bucket size */
2697 u32 min=samples[0];
2698 u32 max=samples[0];
2699 for (i=0; i<sampleNum; i++)
2700 {
2701 if (min>samples[i])
2702 {
2703 min=samples[i];
2704 }
2705 if (max<samples[i])
2706 {
2707 max=samples[i];
2708 }
2709 }
2710
2711 int addressSpace=(max-min+1);
2712
2713 static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2714 u32 length = addressSpace;
2715 if (length > maxBuckets)
2716 {
2717 length=maxBuckets;
2718 }
2719 int *buckets=malloc(sizeof(int)*length);
2720 if (buckets==NULL)
2721 {
2722 fclose(f);
2723 return;
2724 }
2725 memset(buckets, 0, sizeof(int)*length);
2726 for (i=0; i<sampleNum;i++)
2727 {
2728 u32 address=samples[i];
2729 long long a=address-min;
2730 long long b=length-1;
2731 long long c=addressSpace-1;
2732 int index=(a*b)/c; /* danger!!!! int32 overflows */
2733 buckets[index]++;
2734 }
2735
2736 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2737 writeLong(f, min); /* low_pc */
2738 writeLong(f, max); /* high_pc */
2739 writeLong(f, length); /* # of samples */
2740 writeLong(f, 64000000); /* 64MHz */
2741 writeString(f, "seconds");
2742 for (i=0; i<(15-strlen("seconds")); i++)
2743 writeData(f, &zero, 1);
2744 writeString(f, "s");
2745
2746 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2747
2748 char *data=malloc(2*length);
2749 if (data!=NULL)
2750 {
2751 for (i=0; i<length;i++)
2752 {
2753 int val;
2754 val=buckets[i];
2755 if (val>65535)
2756 {
2757 val=65535;
2758 }
2759 data[i*2]=val&0xff;
2760 data[i*2+1]=(val>>8)&0xff;
2761 }
2762 free(buckets);
2763 writeData(f, data, length * 2);
2764 free(data);
2765 } else
2766 {
2767 free(buckets);
2768 }
2769
2770 fclose(f);
2771 }
2772
2773 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2774 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2775 {
2776 target_t *target = get_current_target(cmd_ctx);
2777 struct timeval timeout, now;
2778
2779 gettimeofday(&timeout, NULL);
2780 if (argc!=2)
2781 {
2782 return ERROR_COMMAND_SYNTAX_ERROR;
2783 }
2784 char *end;
2785 timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2786 if (*end)
2787 {
2788 return ERROR_OK;
2789 }
2790
2791 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2792
2793 static const int maxSample=10000;
2794 u32 *samples=malloc(sizeof(u32)*maxSample);
2795 if (samples==NULL)
2796 return ERROR_OK;
2797
2798 int numSamples=0;
2799 int retval=ERROR_OK;
2800 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2801 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2802
2803 for (;;)
2804 {
2805 target_poll(target);
2806 if (target->state == TARGET_HALTED)
2807 {
2808 u32 t=*((u32 *)reg->value);
2809 samples[numSamples++]=t;
2810 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2811 target_poll(target);
2812 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2813 } else if (target->state == TARGET_RUNNING)
2814 {
2815 /* We want to quickly sample the PC. */
2816 if((retval = target_halt(target)) != ERROR_OK)
2817 {
2818 free(samples);
2819 return retval;
2820 }
2821 } else
2822 {
2823 command_print(cmd_ctx, "Target not halted or running");
2824 retval=ERROR_OK;
2825 break;
2826 }
2827 if (retval!=ERROR_OK)
2828 {
2829 break;
2830 }
2831
2832 gettimeofday(&now, NULL);
2833 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2834 {
2835 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2836 if((retval = target_poll(target)) != ERROR_OK)
2837 {
2838 free(samples);
2839 return retval;
2840 }
2841 if (target->state == TARGET_HALTED)
2842 {
2843 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2844 }
2845 if((retval = target_poll(target)) != ERROR_OK)
2846 {
2847 free(samples);
2848 return retval;
2849 }
2850 writeGmon(samples, numSamples, args[1]);
2851 command_print(cmd_ctx, "Wrote %s", args[1]);
2852 break;
2853 }
2854 }
2855 free(samples);
2856
2857 return ERROR_OK;
2858 }
2859
2860 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2861 {
2862 char *namebuf;
2863 Jim_Obj *nameObjPtr, *valObjPtr;
2864 int result;
2865
2866 namebuf = alloc_printf("%s(%d)", varname, idx);
2867 if (!namebuf)
2868 return JIM_ERR;
2869
2870 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2871 valObjPtr = Jim_NewIntObj(interp, val);
2872 if (!nameObjPtr || !valObjPtr)
2873 {
2874 free(namebuf);
2875 return JIM_ERR;
2876 }
2877
2878 Jim_IncrRefCount(nameObjPtr);
2879 Jim_IncrRefCount(valObjPtr);
2880 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2881 Jim_DecrRefCount(interp, nameObjPtr);
2882 Jim_DecrRefCount(interp, valObjPtr);
2883 free(namebuf);
2884 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2885 return result;
2886 }
2887
2888 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2889 {
2890 command_context_t *context;
2891 target_t *target;
2892
2893 context = Jim_GetAssocData(interp, "context");
2894 if (context == NULL)
2895 {
2896 LOG_ERROR("mem2array: no command context");
2897 return JIM_ERR;
2898 }
2899 target = get_current_target(context);
2900 if (target == NULL)
2901 {
2902 LOG_ERROR("mem2array: no current target");
2903 return JIM_ERR;
2904 }
2905
2906 return target_mem2array(interp, target, argc-1, argv+1);
2907 }
2908
2909 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2910 {
2911 long l;
2912 u32 width;
2913 int len;
2914 u32 addr;
2915 u32 count;
2916 u32 v;
2917 const char *varname;
2918 u8 buffer[4096];
2919 int n, e, retval;
2920 u32 i;
2921
2922 /* argv[1] = name of array to receive the data
2923 * argv[2] = desired width
2924 * argv[3] = memory address
2925 * argv[4] = count of times to read
2926 */
2927 if (argc != 4) {
2928 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2929 return JIM_ERR;
2930 }
2931 varname = Jim_GetString(argv[0], &len);
2932 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2933
2934 e = Jim_GetLong(interp, argv[1], &l);
2935 width = l;
2936 if (e != JIM_OK) {
2937 return e;
2938 }
2939
2940 e = Jim_GetLong(interp, argv[2], &l);
2941 addr = l;
2942 if (e != JIM_OK) {
2943 return e;
2944 }
2945 e = Jim_GetLong(interp, argv[3], &l);
2946 len = l;
2947 if (e != JIM_OK) {
2948 return e;
2949 }
2950 switch (width) {
2951 case 8:
2952 width = 1;
2953 break;
2954 case 16:
2955 width = 2;
2956 break;
2957 case 32:
2958 width = 4;
2959 break;
2960 default:
2961 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2962 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2963 return JIM_ERR;
2964 }
2965 if (len == 0) {
2966 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2967 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2968 return JIM_ERR;
2969 }
2970 if ((addr + (len * width)) < addr) {
2971 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2972 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2973 return JIM_ERR;
2974 }
2975 /* absurd transfer size? */
2976 if (len > 65536) {
2977 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2978 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2979 return JIM_ERR;
2980 }
2981
2982 if ((width == 1) ||
2983 ((width == 2) && ((addr & 1) == 0)) ||
2984 ((width == 4) && ((addr & 3) == 0))) {
2985 /* all is well */
2986 } else {
2987 char buf[100];
2988 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2989 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2990 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2991 return JIM_ERR;
2992 }
2993
2994 /* Transfer loop */
2995
2996 /* index counter */
2997 n = 0;
2998 /* assume ok */
2999 e = JIM_OK;
3000 while (len) {
3001 /* Slurp... in buffer size chunks */
3002
3003 count = len; /* in objects.. */
3004 if (count > (sizeof(buffer)/width)) {
3005 count = (sizeof(buffer)/width);
3006 }
3007
3008 retval = target_read_memory( target, addr, width, count, buffer );
3009 if (retval != ERROR_OK) {
3010 /* BOO !*/
3011 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3012 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3013 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3014 e = JIM_ERR;
3015 len = 0;
3016 } else {
3017 v = 0; /* shut up gcc */
3018 for (i = 0 ;i < count ;i++, n++) {
3019 switch (width) {
3020 case 4:
3021 v = target_buffer_get_u32(target, &buffer[i*width]);
3022 break;
3023 case 2:
3024 v = target_buffer_get_u16(target, &buffer[i*width]);
3025 break;
3026 case 1:
3027 v = buffer[i] & 0x0ff;
3028 break;
3029 }
3030 new_int_array_element(interp, varname, n, v);
3031 }
3032 len -= count;
3033 }
3034 }
3035
3036 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3037
3038 return JIM_OK;
3039 }
3040
3041 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
3042 {
3043 char *namebuf;
3044 Jim_Obj *nameObjPtr, *valObjPtr;
3045 int result;
3046 long l;
3047
3048 namebuf = alloc_printf("%s(%d)", varname, idx);
3049 if (!namebuf)
3050 return JIM_ERR;
3051
3052 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3053 if (!nameObjPtr)
3054 {
3055 free(namebuf);
3056 return JIM_ERR;
3057 }
3058
3059 Jim_IncrRefCount(nameObjPtr);
3060 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3061 Jim_DecrRefCount(interp, nameObjPtr);
3062 free(namebuf);
3063 if (valObjPtr == NULL)
3064 return JIM_ERR;
3065
3066 result = Jim_GetLong(interp, valObjPtr, &l);
3067 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3068 *val = l;
3069 return result;
3070 }
3071
3072 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3073 {
3074 command_context_t *context;
3075 target_t *target;
3076
3077 context = Jim_GetAssocData(interp, "context");
3078 if (context == NULL){
3079 LOG_ERROR("array2mem: no command context");
3080 return JIM_ERR;
3081 }
3082 target = get_current_target(context);
3083 if (target == NULL){
3084 LOG_ERROR("array2mem: no current target");
3085 return JIM_ERR;
3086 }
3087
3088 return target_array2mem( interp,target, argc-1, argv+1 );
3089 }
3090
3091 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3092 {
3093 long l;
3094 u32 width;
3095 int len;
3096 u32 addr;
3097 u32 count;
3098 u32 v;
3099 const char *varname;
3100 u8 buffer[4096];
3101 int n, e, retval;
3102 u32 i;
3103
3104 /* argv[1] = name of array to get the data
3105 * argv[2] = desired width
3106 * argv[3] = memory address
3107 * argv[4] = count to write
3108 */
3109 if (argc != 4) {
3110 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3111 return JIM_ERR;
3112 }
3113 varname = Jim_GetString(argv[0], &len);
3114 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3115
3116 e = Jim_GetLong(interp, argv[1], &l);
3117 width = l;
3118 if (e != JIM_OK) {
3119 return e;
3120 }
3121
3122 e = Jim_GetLong(interp, argv[2], &l);
3123 addr = l;
3124 if (e != JIM_OK) {
3125 return e;
3126 }
3127 e = Jim_GetLong(interp, argv[3], &l);
3128 len = l;
3129 if (e != JIM_OK) {
3130 return e;
3131 }
3132 switch (width) {
3133 case 8:
3134 width = 1;
3135 break;
3136 case 16:
3137 width = 2;
3138 break;
3139 case 32:
3140 width = 4;
3141 break;
3142 default:
3143 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3144 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3145 return JIM_ERR;
3146 }
3147 if (len == 0) {
3148 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3149 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3150 return JIM_ERR;
3151 }
3152 if ((addr + (len * width)) < addr) {
3153 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3154 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3155 return JIM_ERR;
3156 }
3157 /* absurd transfer size? */
3158 if (len > 65536) {
3159 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3160 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3161 return JIM_ERR;
3162 }
3163
3164 if ((width == 1) ||
3165 ((width == 2) && ((addr & 1) == 0)) ||
3166 ((width == 4) && ((addr & 3) == 0))) {
3167 /* all is well */
3168 } else {
3169 char buf[100];
3170 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3171 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3172 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3173 return JIM_ERR;
3174 }
3175
3176 /* Transfer loop */
3177
3178 /* index counter */
3179 n = 0;
3180 /* assume ok */
3181 e = JIM_OK;
3182 while (len) {
3183 /* Slurp... in buffer size chunks */
3184
3185 count = len; /* in objects.. */
3186 if (count > (sizeof(buffer)/width)) {
3187 count = (sizeof(buffer)/width);
3188 }
3189
3190 v = 0; /* shut up gcc */
3191 for (i = 0 ;i < count ;i++, n++) {
3192 get_int_array_element(interp, varname, n, &v);
3193 switch (width) {
3194 case 4:
3195 target_buffer_set_u32(target, &buffer[i*width], v);
3196 break;
3197 case 2:
3198 target_buffer_set_u16(target, &buffer[i*width], v);
3199 break;
3200 case 1:
3201 buffer[i] = v & 0x0ff;
3202 break;
3203 }
3204 }
3205 len -= count;
3206
3207 retval = target_write_memory(target, addr, width, count, buffer);
3208 if (retval != ERROR_OK) {
3209 /* BOO !*/
3210 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3211 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3212 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3213 e = JIM_ERR;
3214 len = 0;
3215 }
3216 }
3217
3218 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3219
3220 return JIM_OK;
3221 }
3222
3223 void target_all_handle_event( enum target_event e )
3224 {
3225 target_t *target;
3226
3227 LOG_DEBUG( "**all*targets: event: %d, %s",
3228 e,
3229 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3230
3231 target = all_targets;
3232 while (target){
3233 target_handle_event( target, e );
3234 target = target->next;
3235 }
3236 }
3237
3238 void target_handle_event( target_t *target, enum target_event e )
3239 {
3240 target_event_action_t *teap;
3241 int done;
3242
3243 teap = target->event_action;
3244
3245 done = 0;
3246 while( teap ){
3247 if( teap->event == e ){
3248 done = 1;
3249 LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3250 target->target_number,
3251 target->cmd_name,
3252 target_get_name(target),
3253 e,
3254 Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3255 Jim_GetString( teap->body, NULL ) );
3256 if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3257 {
3258 Jim_PrintErrorMessage(interp);
3259 }
3260 }
3261 teap = teap->next;
3262 }
3263 if( !done ){
3264 LOG_DEBUG( "event: %d %s - no action",
3265 e,
3266 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3267 }
3268 }
3269
3270 enum target_cfg_param {
3271 TCFG_TYPE,
3272 TCFG_EVENT,
3273 TCFG_WORK_AREA_VIRT,
3274 TCFG_WORK_AREA_PHYS,
3275 TCFG_WORK_AREA_SIZE,
3276 TCFG_WORK_AREA_BACKUP,
3277 TCFG_ENDIAN,
3278 TCFG_VARIANT,
3279 TCFG_CHAIN_POSITION,
3280 };
3281
3282 static Jim_Nvp nvp_config_opts[] = {
3283 { .name = "-type", .value = TCFG_TYPE },
3284 { .name = "-event", .value = TCFG_EVENT },
3285 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3286 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3287 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3288 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3289 { .name = "-endian" , .value = TCFG_ENDIAN },
3290 { .name = "-variant", .value = TCFG_VARIANT },
3291 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3292
3293 { .name = NULL, .value = -1 }
3294 };
3295
3296 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3297 {
3298 Jim_Nvp *n;
3299 Jim_Obj *o;
3300 jim_wide w;
3301 char *cp;
3302 int e;
3303
3304 /* parse config or cget options ... */
3305 while( goi->argc > 0 ){
3306 Jim_SetEmptyResult( goi->interp );
3307 /* Jim_GetOpt_Debug( goi ); */
3308
3309 if( target->type->target_jim_configure ){
3310 /* target defines a configure function */
3311 /* target gets first dibs on parameters */
3312 e = (*(target->type->target_jim_configure))( target, goi );
3313 if( e == JIM_OK ){
3314 /* more? */
3315 continue;
3316 }
3317 if( e == JIM_ERR ){
3318 /* An error */
3319 return e;
3320 }
3321 /* otherwise we 'continue' below */
3322 }
3323 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3324 if( e != JIM_OK ){
3325 Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3326 return e;
3327 }
3328 switch( n->value ){
3329 case TCFG_TYPE:
3330 /* not setable */
3331 if( goi->isconfigure ){
3332 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3333 return JIM_ERR;
3334 } else {
3335 no_params:
3336 if( goi->argc != 0 ){
3337 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3338 return JIM_ERR;
3339 }
3340 }
3341 Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3342 /* loop for more */
3343 break;
3344 case TCFG_EVENT:
3345 if( goi->argc == 0 ){
3346 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3347 return JIM_ERR;
3348 }
3349
3350 e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3351 if( e != JIM_OK ){
3352 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3353 return e;
3354 }
3355
3356 if( goi->isconfigure ){
3357 if( goi->argc != 1 ){
3358 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3359 return JIM_ERR;
3360 }
3361 } else {
3362 if( goi->argc != 0 ){
3363 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3364 return JIM_ERR;
3365 }
3366 }
3367
3368 {
3369 target_event_action_t *teap;
3370
3371 teap = target->event_action;
3372 /* replace existing? */
3373 while( teap ){
3374 if( teap->event == (enum target_event)n->value ){
3375 break;
3376 }
3377 teap = teap->next;
3378 }
3379
3380 if( goi->isconfigure ){
3381 if( teap == NULL ){
3382 /* create new */
3383 teap = calloc( 1, sizeof(*teap) );
3384 }
3385 teap->event = n->value;
3386 Jim_GetOpt_Obj( goi, &o );
3387 if( teap->body ){
3388 Jim_DecrRefCount( interp, teap->body );
3389 }
3390 teap->body = Jim_DuplicateObj( goi->interp, o );
3391 /*
3392 * FIXME:
3393 * Tcl/TK - "tk events" have a nice feature.
3394 * See the "BIND" command.
3395 * We should support that here.
3396 * You can specify %X and %Y in the event code.
3397 * The idea is: %T - target name.
3398 * The idea is: %N - target number
3399 * The idea is: %E - event name.
3400 */
3401 Jim_IncrRefCount( teap->body );
3402
3403 /* add to head of event list */
3404 teap->next = target->event_action;
3405 target->event_action = teap;
3406 Jim_SetEmptyResult(goi->interp);
3407 } else {
3408 /* get */
3409 if( teap == NULL ){
3410 Jim_SetEmptyResult( goi->interp );
3411 } else {
3412 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3413 }
3414 }
3415 }
3416 /* loop for more */
3417 break;
3418
3419 case TCFG_WORK_AREA_VIRT:
3420 if( goi->isconfigure ){
3421 target_free_all_working_areas(target);
3422 e = Jim_GetOpt_Wide( goi, &w );
3423 if( e != JIM_OK ){
3424 return e;
3425 }
3426 target->working_area_virt = w;
3427 } else {
3428 if( goi->argc != 0 ){
3429 goto no_params;
3430 }
3431 }
3432 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3433 /* loop for more */
3434 break;
3435
3436 case TCFG_WORK_AREA_PHYS:
3437 if( goi->isconfigure ){
3438 target_free_all_working_areas(target);
3439 e = Jim_GetOpt_Wide( goi, &w );
3440 if( e != JIM_OK ){
3441 return e;
3442 }
3443 target->working_area_phys = w;
3444 } else {
3445 if( goi->argc != 0 ){
3446 goto no_params;
3447 }
3448 }
3449 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3450 /* loop for more */
3451 break;
3452
3453 case TCFG_WORK_AREA_SIZE:
3454 if( goi->isconfigure ){
3455 target_free_all_working_areas(target);
3456 e = Jim_GetOpt_Wide( goi, &w );
3457 if( e != JIM_OK ){
3458 return e;
3459 }
3460 target->working_area_size = w;
3461 } else {
3462 if( goi->argc != 0 ){
3463 goto no_params;
3464 }
3465 }
3466 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3467 /* loop for more */
3468 break;
3469
3470 case TCFG_WORK_AREA_BACKUP:
3471 if( goi->isconfigure ){
3472 target_free_all_working_areas(target);
3473 e = Jim_GetOpt_Wide( goi, &w );
3474 if( e != JIM_OK ){
3475 return e;
3476 }
3477 /* make this exactly 1 or 0 */
3478 target->backup_working_area = (!!w);
3479 } else {
3480 if( goi->argc != 0 ){
3481 goto no_params;
3482 }
3483 }
3484 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3485 /* loop for more e*/
3486 break;
3487
3488 case TCFG_ENDIAN:
3489 if( goi->isconfigure ){
3490 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3491 if( e != JIM_OK ){
3492 Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3493 return e;
3494 }
3495 target->endianness = n->value;
3496 } else {
3497 if( goi->argc != 0 ){
3498 goto no_params;
3499 }
3500 }
3501 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3502 if( n->name == NULL ){
3503 target->endianness = TARGET_LITTLE_ENDIAN;
3504 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3505 }
3506 Jim_SetResultString( goi->interp, n->name, -1 );
3507 /* loop for more */
3508 break;
3509
3510 case TCFG_VARIANT:
3511 if( goi->isconfigure ){
3512 if( goi->argc < 1 ){
3513 Jim_SetResult_sprintf( goi->interp,
3514 "%s ?STRING?",
3515 n->name );
3516 return JIM_ERR;
3517 }
3518 if( target->variant ){
3519 free((void *)(target->variant));
3520 }
3521 e = Jim_GetOpt_String( goi, &cp, NULL );
3522 target->variant = strdup(cp);
3523 } else {
3524 if( goi->argc != 0 ){
3525 goto no_params;
3526 }
3527 }
3528 Jim_SetResultString( goi->interp, target->variant,-1 );
3529 /* loop for more */
3530 break;
3531 case TCFG_CHAIN_POSITION:
3532 if( goi->isconfigure ){
3533 Jim_Obj *o;
3534 jtag_tap_t *tap;
3535 target_free_all_working_areas(target);
3536 e = Jim_GetOpt_Obj( goi, &o );
3537 if( e != JIM_OK ){
3538 return e;
3539 }
3540 tap = jtag_tap_by_jim_obj( goi->interp, o );
3541 if( tap == NULL ){
3542 return JIM_ERR;
3543 }
3544 /* make this exactly 1 or 0 */
3545 target->tap = tap;
3546 } else {
3547 if( goi->argc != 0 ){
3548 goto no_params;
3549 }
3550 }
3551 Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3552 /* loop for more e*/
3553 break;
3554 }
3555 } /* while( goi->argc ) */
3556
3557
3558 /* done - we return */
3559 return JIM_OK;
3560 }
3561
3562 /** this is the 'tcl' handler for the target specific command */
3563 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3564 {
3565 Jim_GetOptInfo goi;
3566 jim_wide a,b,c;
3567 int x,y,z;
3568 u8 target_buf[32];
3569 Jim_Nvp *n;
3570 target_t *target;
3571 struct command_context_s *cmd_ctx;
3572 int e;
3573
3574 enum {
3575 TS_CMD_CONFIGURE,
3576 TS_CMD_CGET,
3577
3578 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3579 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3580 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3581 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3582 TS_CMD_EXAMINE,
3583 TS_CMD_POLL,
3584 TS_CMD_RESET,
3585 TS_CMD_HALT,
3586 TS_CMD_WAITSTATE,
3587 TS_CMD_EVENTLIST,
3588 TS_CMD_CURSTATE,
3589 TS_CMD_INVOKE_EVENT,
3590 };
3591
3592 static const Jim_Nvp target_options[] = {
3593 { .name = "configure", .value = TS_CMD_CONFIGURE },
3594 { .name = "cget", .value = TS_CMD_CGET },
3595 { .name = "mww", .value = TS_CMD_MWW },
3596 { .name = "mwh", .value = TS_CMD_MWH },
3597 { .name = "mwb", .value = TS_CMD_MWB },
3598 { .name = "mdw", .value = TS_CMD_MDW },
3599 { .name = "mdh", .value = TS_CMD_MDH },
3600 { .name = "mdb", .value = TS_CMD_MDB },
3601 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3602 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3603 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3604 { .name = "curstate", .value = TS_CMD_CURSTATE },
3605
3606 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3607 { .name = "arp_poll", .value = TS_CMD_POLL },
3608 { .name = "arp_reset", .value = TS_CMD_RESET },
3609 { .name = "arp_halt", .value = TS_CMD_HALT },
3610 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3611 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3612
3613 { .name = NULL, .value = -1 },
3614 };
3615
3616 /* go past the "command" */
3617 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3618
3619 target = Jim_CmdPrivData( goi.interp );
3620 cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3621
3622 /* commands here are in an NVP table */
3623 e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3624 if( e != JIM_OK ){
3625 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3626 return e;
3627 }
3628 /* Assume blank result */
3629 Jim_SetEmptyResult( goi.interp );
3630
3631 switch( n->value ){
3632 case TS_CMD_CONFIGURE:
3633 if( goi.argc < 2 ){
3634 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3635 return JIM_ERR;
3636 }
3637 goi.isconfigure = 1;
3638 return target_configure( &goi, target );
3639 case TS_CMD_CGET:
3640 // some things take params
3641 if( goi.argc < 1 ){
3642 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3643 return JIM_ERR;
3644 }
3645 goi.isconfigure = 0;
3646 return target_configure( &goi, target );
3647 break;
3648 case TS_CMD_MWW:
3649 case TS_CMD_MWH:
3650 case TS_CMD_MWB:
3651 /* argv[0] = cmd
3652 * argv[1] = address
3653 * argv[2] = data
3654 * argv[3] = optional count.
3655 */
3656
3657 if( (goi.argc == 3) || (goi.argc == 4) ){
3658 /* all is well */
3659 } else {
3660 mwx_error:
3661 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3662 return JIM_ERR;
3663 }
3664
3665 e = Jim_GetOpt_Wide( &goi, &a );
3666 if( e != JIM_OK ){
3667 goto mwx_error;
3668 }
3669
3670 e = Jim_GetOpt_Wide( &goi, &b );
3671 if( e != JIM_OK ){
3672 goto mwx_error;
3673 }
3674 if( goi.argc ){
3675 e = Jim_GetOpt_Wide( &goi, &c );
3676 if( e != JIM_OK ){
3677 goto mwx_error;
3678 }
3679 } else {
3680 c = 1;
3681 }
3682
3683 switch( n->value ){
3684 case TS_CMD_MWW:
3685 target_buffer_set_u32( target, target_buf, b );
3686 b = 4;
3687 break;
3688 case TS_CMD_MWH:
3689 target_buffer_set_u16( target, target_buf, b );
3690 b = 2;
3691 break;
3692 case TS_CMD_MWB:
3693 target_buffer_set_u8( target, target_buf, b );
3694 b = 1;
3695 break;
3696 }
3697 for( x = 0 ; x < c ; x++ ){
3698 e = target_write_memory( target, a, b, 1, target_buf );
3699 if( e != ERROR_OK ){
3700 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3701 return JIM_ERR;
3702 }
3703 /* b = width */
3704 a = a + b;
3705 }
3706 return JIM_OK;
3707 break;
3708
3709 /* display */
3710 case TS_CMD_MDW:
3711 case TS_CMD_MDH:
3712 case TS_CMD_MDB:
3713 /* argv[0] = command
3714 * argv[1] = address
3715 * argv[2] = optional count
3716 */
3717 if( (goi.argc == 2) || (goi.argc == 3) ){
3718 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3719 return JIM_ERR;
3720 }
3721 e = Jim_GetOpt_Wide( &goi, &a );
3722 if( e != JIM_OK ){
3723 return JIM_ERR;
3724 }
3725 if( goi.argc ){
3726 e = Jim_GetOpt_Wide( &goi, &c );
3727 if( e != JIM_OK ){
3728 return JIM_ERR;
3729 }
3730 } else {
3731 c = 1;
3732 }
3733 b = 1; /* shut up gcc */
3734 switch( n->value ){
3735 case TS_CMD_MDW:
3736 b = 4;
3737 break;
3738 case TS_CMD_MDH:
3739 b = 2;
3740 break;
3741 case TS_CMD_MDB:
3742 b = 1;
3743 break;
3744 }
3745
3746 /* convert to "bytes" */
3747 c = c * b;
3748 /* count is now in 'BYTES' */
3749 while( c > 0 ){
3750 y = c;
3751 if( y > 16 ){
3752 y = 16;
3753 }
3754 e = target_read_memory( target, a, b, y / b, target_buf );
3755 if( e != ERROR_OK ){
3756 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3757 return JIM_ERR;
3758 }
3759
3760 Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3761 switch( b ){
3762 case 4:
3763 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3764 z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3765 Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3766 }
3767 for( ; (x < 16) ; x += 4 ){
3768 Jim_fprintf( interp, interp->cookie_stdout, " " );
3769 }
3770 break;
3771 case 2:
3772 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3773 z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3774 Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3775 }
3776 for( ; (x < 16) ; x += 2 ){
3777 Jim_fprintf( interp, interp->cookie_stdout, " " );
3778 }
3779 break;
3780 case 1:
3781 default:
3782 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3783 z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3784 Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3785 }
3786 for( ; (x < 16) ; x += 1 ){
3787 Jim_fprintf( interp, interp->cookie_stdout, " " );
3788 }
3789 break;
3790 }
3791 /* ascii-ify the bytes */
3792 for( x = 0 ; x < y ; x++ ){
3793 if( (target_buf[x] >= 0x20) &&
3794 (target_buf[x] <= 0x7e) ){
3795 /* good */
3796 } else {
3797 /* smack it */
3798 target_buf[x] = '.';
3799 }
3800 }
3801 /* space pad */
3802 while( x < 16 ){
3803 target_buf[x] = ' ';
3804 x++;
3805 }
3806 /* terminate */
3807 target_buf[16] = 0;
3808 /* print - with a newline */
3809 Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3810 /* NEXT... */
3811 c -= 16;
3812 a += 16;
3813 }
3814 return JIM_OK;
3815 case TS_CMD_MEM2ARRAY:
3816 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3817 break;
3818 case TS_CMD_ARRAY2MEM:
3819 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3820 break;
3821 case TS_CMD_EXAMINE:
3822 if( goi.argc ){
3823 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3824 return JIM_ERR;
3825 }
3826 if (!target->tap->enabled)
3827 goto err_tap_disabled;
3828 e = target->type->examine( target );
3829 if( e != ERROR_OK ){
3830 Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3831 return JIM_ERR;
3832 }
3833 return JIM_OK;
3834 case TS_CMD_POLL:
3835 if( goi.argc ){
3836 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3837 return JIM_ERR;
3838 }
3839 if (!target->tap->enabled)
3840 goto err_tap_disabled;
3841 if( !(target_was_examined(target)) ){
3842 e = ERROR_TARGET_NOT_EXAMINED;
3843 } else {
3844 e = target->type->poll( target );
3845 }
3846 if( e != ERROR_OK ){
3847 Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3848 return JIM_ERR;
3849 } else {
3850 return JIM_OK;
3851 }
3852 break;
3853 case TS_CMD_RESET:
3854 if( goi.argc != 2 ){
3855 Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3856 return JIM_ERR;
3857 }
3858 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3859 if( e != JIM_OK ){
3860 Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3861 return e;
3862 }
3863 /* the halt or not param */
3864 e = Jim_GetOpt_Wide( &goi, &a);
3865 if( e != JIM_OK ){
3866 return e;
3867 }
3868 if (!target->tap->enabled)
3869 goto err_tap_disabled;
3870 /* determine if we should halt or not. */
3871 target->reset_halt = !!a;
3872 /* When this happens - all workareas are invalid. */
3873 target_free_all_working_areas_restore(target, 0);
3874
3875 /* do the assert */
3876 if( n->value == NVP_ASSERT ){
3877 target->type->assert_reset( target );
3878 } else {
3879 target->type->deassert_reset( target );
3880 }
3881 return JIM_OK;
3882 case TS_CMD_HALT:
3883 if( goi.argc ){
3884 Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3885 return JIM_ERR;
3886 }
3887 if (!target->tap->enabled)
3888 goto err_tap_disabled;
3889 target->type->halt( target );
3890 return JIM_OK;
3891 case TS_CMD_WAITSTATE:
3892 /* params: <name> statename timeoutmsecs */
3893 if( goi.argc != 2 ){
3894 Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3895 return JIM_ERR;
3896 }
3897 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3898 if( e != JIM_OK ){
3899 Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3900 return e;
3901 }
3902 e = Jim_GetOpt_Wide( &goi, &a );
3903 if( e != JIM_OK ){
3904 return e;
3905 }
3906 if (!target->tap->enabled)
3907 goto err_tap_disabled;
3908 e = target_wait_state( target, n->value, a );
3909 if( e != ERROR_OK ){
3910 Jim_SetResult_sprintf( goi.interp,
3911 "target: %s wait %s fails (%d) %s",
3912 target->cmd_name,
3913 n->name,
3914 e, target_strerror_safe(e) );
3915 return JIM_ERR;
3916 } else {
3917 return JIM_OK;
3918 }
3919 case TS_CMD_EVENTLIST:
3920 /* List for human, Events defined for this target.
3921 * scripts/programs should use 'name cget -event NAME'
3922 */
3923 {
3924 target_event_action_t *teap;
3925 teap = target->event_action;
3926 command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3927 target->target_number,
3928 target->cmd_name );
3929 command_print( cmd_ctx, "%-25s | Body", "Event");
3930 command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3931 while( teap ){
3932 command_print( cmd_ctx,
3933 "%-25s | %s",
3934 Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3935 Jim_GetString( teap->body, NULL ) );
3936 teap = teap->next;
3937 }
3938 command_print( cmd_ctx, "***END***");
3939 return JIM_OK;
3940 }
3941 case TS_CMD_CURSTATE:
3942 if( goi.argc != 0 ){
3943 Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3944 return JIM_ERR;
3945 }
3946 Jim_SetResultString( goi.interp,
3947 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3948 return JIM_OK;
3949 case TS_CMD_INVOKE_EVENT:
3950 if( goi.argc != 1 ){
3951 Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3952 return JIM_ERR;
3953 }
3954 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3955 if( e != JIM_OK ){
3956 Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3957 return e;
3958 }
3959 target_handle_event( target, n->value );
3960 return JIM_OK;
3961 }
3962 return JIM_ERR;
3963
3964 err_tap_disabled:
3965 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
3966 return JIM_ERR;
3967 }
3968
3969 static int target_create( Jim_GetOptInfo *goi )
3970 {
3971 Jim_Obj *new_cmd;
3972 Jim_Cmd *cmd;
3973 const char *cp;
3974 char *cp2;
3975 int e;
3976 int x;
3977 target_t *target;
3978 struct command_context_s *cmd_ctx;
3979
3980 cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3981 if( goi->argc < 3 ){
3982 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3983 return JIM_ERR;
3984 }
3985
3986 /* COMMAND */
3987 Jim_GetOpt_Obj( goi, &new_cmd );
3988 /* does this command exist? */
3989 cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3990 if( cmd ){
3991 cp = Jim_GetString( new_cmd, NULL );
3992 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3993 return JIM_ERR;
3994 }
3995
3996 /* TYPE */
3997 e = Jim_GetOpt_String( goi, &cp2, NULL );
3998 cp = cp2;
3999 /* now does target type exist */
4000 for( x = 0 ; target_types[x] ; x++ ){
4001 if( 0 == strcmp( cp, target_types[x]->name ) ){
4002 /* found */
4003 break;
4004 }
4005 }
4006 if( target_types[x] == NULL ){
4007 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
4008 for( x = 0 ; target_types[x] ; x++ ){
4009 if( target_types[x+1] ){
4010 Jim_AppendStrings( goi->interp,
4011 Jim_GetResult(goi->interp),
4012 target_types[x]->name,
4013 ", ", NULL);
4014 } else {
4015 Jim_AppendStrings( goi->interp,
4016 Jim_GetResult(goi->interp),
4017 " or ",
4018 target_types[x]->name,NULL );
4019 }
4020 }
4021 return JIM_ERR;
4022 }
4023
4024 /* Create it */
4025 target = calloc(1,sizeof(target_t));
4026 /* set target number */
4027 target->target_number = new_target_number();
4028
4029 /* allocate memory for each unique target type */
4030 target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4031
4032 memcpy( target->type, target_types[x], sizeof(target_type_t));
4033
4034 /* will be set by "-endian" */
4035 target->endianness = TARGET_ENDIAN_UNKNOWN;
4036
4037 target->working_area = 0x0;
4038 target->working_area_size = 0x0;
4039 target->working_areas = NULL;
4040 target->backup_working_area = 0;
4041
4042 target->state = TARGET_UNKNOWN;
4043 target->debug_reason = DBG_REASON_UNDEFINED;
4044 target->reg_cache = NULL;
4045 target->breakpoints = NULL;
4046 target->watchpoints = NULL;
4047 target->next = NULL;
4048 target->arch_info = NULL;
4049
4050 target->display = 1;
4051
4052 /* initialize trace information */
4053 target->trace_info = malloc(sizeof(trace_t));
4054 target->trace_info->num_trace_points = 0;
4055 target->trace_info->trace_points_size = 0;
4056 target->trace_info->trace_points = NULL;
4057 target->trace_info->trace_history_size = 0;
4058 target->trace_info->trace_history = NULL;
4059 target->trace_info->trace_history_pos = 0;
4060 target->trace_info->trace_history_overflowed = 0;
4061
4062 target->dbgmsg = NULL;
4063 target->dbg_msg_enabled = 0;
4064
4065 target->endianness = TARGET_ENDIAN_UNKNOWN;
4066
4067 /* Do the rest as "configure" options */
4068 goi->isconfigure = 1;
4069 e = target_configure( goi, target);
4070
4071 if (target->tap == NULL)
4072 {
4073 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4074 e=JIM_ERR;
4075 }
4076
4077 if( e != JIM_OK ){
4078 free( target->type );
4079 free( target );
4080 return e;
4081 }
4082
4083 if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4084 /* default endian to little if not specified */
4085 target->endianness = TARGET_LITTLE_ENDIAN;
4086 }
4087
4088 /* incase variant is not set */
4089 if (!target->variant)
4090 target->variant = strdup("");
4091
4092 /* create the target specific commands */
4093 if( target->type->register_commands ){
4094 (*(target->type->register_commands))( cmd_ctx );
4095 }
4096 if( target->type->target_create ){
4097 (*(target->type->target_create))( target, goi->interp );
4098 }
4099
4100 /* append to end of list */
4101 {
4102 target_t **tpp;
4103 tpp = &(all_targets);
4104 while( *tpp ){
4105 tpp = &( (*tpp)->next );
4106 }
4107 *tpp = target;
4108 }
4109
4110 cp = Jim_GetString( new_cmd, NULL );
4111 target->cmd_name = strdup(cp);
4112
4113 /* now - create the new target name command */
4114 e = Jim_CreateCommand( goi->interp,
4115 /* name */
4116 cp,
4117 tcl_target_func, /* C function */
4118 target, /* private data */
4119 NULL ); /* no del proc */
4120
4121 return e;
4122 }
4123
4124 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4125 {
4126 int x,r,e;
4127 jim_wide w;
4128 struct command_context_s *cmd_ctx;
4129 target_t *target;
4130 Jim_GetOptInfo goi;
4131 enum tcmd {
4132 /* TG = target generic */
4133 TG_CMD_CREATE,
4134 TG_CMD_TYPES,
4135 TG_CMD_NAMES,
4136 TG_CMD_CURRENT,
4137 TG_CMD_NUMBER,
4138 TG_CMD_COUNT,
4139 };
4140 const char *target_cmds[] = {
4141 "create", "types", "names", "current", "number",
4142 "count",
4143 NULL /* terminate */
4144 };
4145
4146 LOG_DEBUG("Target command params:");
4147 LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4148
4149 cmd_ctx = Jim_GetAssocData( interp, "context" );
4150
4151 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4152
4153 if( goi.argc == 0 ){
4154 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4155 return JIM_ERR;
4156 }
4157
4158 /* Jim_GetOpt_Debug( &goi ); */
4159 r = Jim_GetOpt_Enum( &goi, target_cmds, &x );
4160 if( r != JIM_OK ){
4161 return r;
4162 }
4163
4164 switch(x){
4165 default:
4166 Jim_Panic(goi.interp,"Why am I here?");
4167 return JIM_ERR;
4168 case TG_CMD_CURRENT:
4169 if( goi.argc != 0 ){
4170 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4171 return JIM_ERR;
4172 }
4173 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4174 return JIM_OK;
4175 case TG_CMD_TYPES:
4176 if( goi.argc != 0 ){
4177 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4178 return JIM_ERR;
4179 }
4180 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4181 for( x = 0 ; target_types[x] ; x++ ){
4182 Jim_ListAppendElement( goi.interp,
4183 Jim_GetResult(goi.interp),
4184 Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4185 }
4186 return JIM_OK;
4187 case TG_CMD_NAMES:
4188 if( goi.argc != 0 ){
4189 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4190 return JIM_ERR;
4191 }
4192 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4193 target = all_targets;
4194 while( target ){
4195 Jim_ListAppendElement( goi.interp,
4196 Jim_GetResult(goi.interp),
4197 Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4198 target = target->next;
4199 }
4200 return JIM_OK;
4201 case TG_CMD_CREATE:
4202 if( goi.argc < 3 ){
4203 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name ... config options ...");
4204 return JIM_ERR;
4205 }
4206 return target_create( &goi );
4207 break;
4208 case TG_CMD_NUMBER:
4209 if( goi.argc != 1 ){
4210 Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4211 return JIM_ERR;
4212 }
4213 e = Jim_GetOpt_Wide( &goi, &w );
4214 if( e != JIM_OK ){
4215 return JIM_ERR;
4216 }
4217 {
4218 target_t *t;
4219 t = get_target_by_num(w);
4220 if( t == NULL ){
4221 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4222 return JIM_ERR;
4223 }
4224 Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4225 return JIM_OK;
4226 }
4227 case TG_CMD_COUNT:
4228 if( goi.argc != 0 ){
4229 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4230 return JIM_ERR;
4231 }
4232 Jim_SetResult( goi.interp,
4233 Jim_NewIntObj( goi.interp, max_target_number()));
4234 return JIM_OK;
4235 }
4236
4237 return JIM_ERR;
4238 }
4239
4240
4241 struct FastLoad
4242 {
4243 u32 address;
4244 u8 *data;
4245 int length;
4246
4247 };
4248
4249 static int fastload_num;
4250 static struct FastLoad *fastload;
4251
4252 static void free_fastload(void)
4253 {
4254 if (fastload!=NULL)
4255 {
4256 int i;
4257 for (i=0; i<fastload_num; i++)
4258 {
4259 if (fastload[i].data)
4260 free(fastload[i].data);
4261 }
4262 free(fastload);
4263 fastload=NULL;
4264 }
4265 }
4266
4267
4268
4269
4270 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4271 {
4272 u8 *buffer;
4273 u32 buf_cnt;
4274 u32 image_size;
4275 u32 min_address=0;
4276 u32 max_address=0xffffffff;
4277 int i;
4278 int retval;
4279
4280 image_t image;
4281
4282 duration_t duration;
4283 char *duration_text;
4284
4285 if ((argc < 1)||(argc > 5))
4286 {
4287 return ERROR_COMMAND_SYNTAX_ERROR;
4288 }
4289
4290 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4291 if (argc >= 2)
4292 {
4293 image.base_address_set = 1;
4294 image.base_address = strtoul(args[1], NULL, 0);
4295 }
4296 else
4297 {
4298 image.base_address_set = 0;
4299 }
4300
4301
4302 image.start_address_set = 0;
4303
4304 if (argc>=4)
4305 {
4306 min_address=strtoul(args[3], NULL, 0);
4307 }
4308 if (argc>=5)
4309 {
4310 max_address=strtoul(args[4], NULL, 0)+min_address;
4311 }
4312
4313 if (min_address>max_address)
4314 {
4315 return ERROR_COMMAND_SYNTAX_ERROR;
4316 }
4317
4318 duration_start_measure(&duration);
4319
4320 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4321 {
4322 return ERROR_OK;
4323 }
4324
4325 image_size = 0x0;
4326 retval = ERROR_OK;
4327 fastload_num=image.num_sections;
4328 fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4329 if (fastload==NULL)
4330 {
4331 image_close(&image);
4332 return ERROR_FAIL;
4333 }
4334 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4335 for (i = 0; i < image.num_sections; i++)
4336 {
4337 buffer = malloc(image.sections[i].size);
4338 if (buffer == NULL)
4339 {
4340 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4341 break;
4342 }
4343
4344 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4345 {
4346 free(buffer);
4347 break;
4348 }
4349
4350 u32 offset=0;
4351 u32 length=buf_cnt;
4352
4353
4354 /* DANGER!!! beware of unsigned comparision here!!! */
4355
4356 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4357 (image.sections[i].base_address<max_address))
4358 {
4359 if (image.sections[i].base_address<min_address)
4360 {
4361 /* clip addresses below */
4362 offset+=min_address-image.sections[i].base_address;
4363 length-=offset;
4364 }
4365
4366 if (image.sections[i].base_address+buf_cnt>max_address)
4367 {
4368 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4369 }
4370
4371 fastload[i].address=image.sections[i].base_address+offset;
4372 fastload[i].data=malloc(length);
4373 if (fastload[i].data==NULL)
4374 {
4375 free(buffer);
4376 break;
4377 }
4378 memcpy(fastload[i].data, buffer+offset, length);
4379 fastload[i].length=length;
4380
4381 image_size += length;
4382 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4383 }
4384
4385 free(buffer);
4386 }
4387
4388 duration_stop_measure(&duration, &duration_text);
4389 if (retval==ERROR_OK)
4390 {
4391 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4392 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4393 }
4394 free(duration_text);
4395
4396 image_close(&image);
4397
4398 if (retval!=ERROR_OK)
4399 {
4400 free_fastload();
4401 }
4402
4403 return retval;
4404 }
4405
4406 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4407 {
4408 if (argc>0)
4409 return ERROR_COMMAND_SYNTAX_ERROR;
4410 if (fastload==NULL)
4411 {
4412 LOG_ERROR("No image in memory");
4413 return ERROR_FAIL;
4414 }
4415 int i;
4416 int ms=timeval_ms();
4417 int size=0;
4418 int retval=ERROR_OK;
4419 for (i=0; i<fastload_num;i++)
4420 {
4421 target_t *target = get_current_target(cmd_ctx);
4422 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4423 if (retval==ERROR_OK)
4424 {
4425 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4426 }
4427 size+=fastload[i].length;
4428 }
4429 int after=timeval_ms();
4430 command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4431 return retval;
4432 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)