flash: fix typos and duplicated words
[openocd.git] / src / flash / nor / at91samd.c
1 /***************************************************************************
2 * Copyright (C) 2013 by Andrey Yurovsky *
3 * Andrey Yurovsky <yurovsky@gmail.com> *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
17 ***************************************************************************/
18
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif
22
23 #include "imp.h"
24 #include "helper/binarybuffer.h"
25
26 #include <target/cortex_m.h>
27
28 #define SAMD_NUM_PROT_BLOCKS 16
29 #define SAMD_PAGE_SIZE_MAX 1024
30
31 #define SAMD_FLASH ((uint32_t)0x00000000) /* physical Flash memory */
32 #define SAMD_USER_ROW ((uint32_t)0x00804000) /* User Row of Flash */
33 #define SAMD_PAC1 0x41000000 /* Peripheral Access Control 1 */
34 #define SAMD_DSU 0x41002000 /* Device Service Unit */
35 #define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
36
37 #define SAMD_DSU_STATUSA 1 /* DSU status register */
38 #define SAMD_DSU_DID 0x18 /* Device ID register */
39 #define SAMD_DSU_CTRL_EXT 0x100 /* CTRL register, external access */
40
41 #define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
42 #define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
43 #define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
44 #define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interrupt Flag Status & Clear */
45 #define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
46 #define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
47 #define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
48
49 #define SAMD_CMDEX_KEY 0xA5UL
50 #define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
51
52 /* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
53 #define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
54 #define SAMD_NVM_CMD_WP 0x04 /* Write Page */
55 #define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxiliary Row */
56 #define SAMD_NVM_CMD_WAP 0x06 /* Write Auxiliary Page */
57 #define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
58 #define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
59 #define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
60 #define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
61 #define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
62 #define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
63 #define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
64
65 /* NVMCTRL bits */
66 #define SAMD_NVM_CTRLB_MANW 0x80
67
68 /* Known identifiers */
69 #define SAMD_PROCESSOR_M0 0x01
70 #define SAMD_FAMILY_D 0x00
71 #define SAMD_FAMILY_L 0x01
72 #define SAMD_FAMILY_C 0x02
73 #define SAMD_SERIES_20 0x00
74 #define SAMD_SERIES_21 0x01
75 #define SAMD_SERIES_22 0x02
76 #define SAMD_SERIES_10 0x02
77 #define SAMD_SERIES_11 0x03
78 #define SAMD_SERIES_09 0x04
79
80 /* Device ID macros */
81 #define SAMD_GET_PROCESSOR(id) (id >> 28)
82 #define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
83 #define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
84 #define SAMD_GET_DEVSEL(id) (id & 0xFF)
85
86 /* Bits to mask out lockbits in user row */
87 #define NVMUSERROW_LOCKBIT_MASK ((uint64_t)0x0000FFFFFFFFFFFF)
88
89 struct samd_part {
90 uint8_t id;
91 const char *name;
92 uint32_t flash_kb;
93 uint32_t ram_kb;
94 };
95
96 /* Known SAMD09 parts. DID reset values missing in RM, see
97 * https://github.com/avrxml/asf/blob/master/sam0/utils/cmsis/samd09/include/ */
98 static const struct samd_part samd09_parts[] = {
99 { 0x0, "SAMD09D14A", 16, 4 },
100 { 0x7, "SAMD09C13A", 8, 4 },
101 };
102
103 /* Known SAMD10 parts */
104 static const struct samd_part samd10_parts[] = {
105 { 0x0, "SAMD10D14AMU", 16, 4 },
106 { 0x1, "SAMD10D13AMU", 8, 4 },
107 { 0x2, "SAMD10D12AMU", 4, 4 },
108 { 0x3, "SAMD10D14ASU", 16, 4 },
109 { 0x4, "SAMD10D13ASU", 8, 4 },
110 { 0x5, "SAMD10D12ASU", 4, 4 },
111 { 0x6, "SAMD10C14A", 16, 4 },
112 { 0x7, "SAMD10C13A", 8, 4 },
113 { 0x8, "SAMD10C12A", 4, 4 },
114 };
115
116 /* Known SAMD11 parts */
117 static const struct samd_part samd11_parts[] = {
118 { 0x0, "SAMD11D14AM", 16, 4 },
119 { 0x1, "SAMD11D13AMU", 8, 4 },
120 { 0x2, "SAMD11D12AMU", 4, 4 },
121 { 0x3, "SAMD11D14ASS", 16, 4 },
122 { 0x4, "SAMD11D13ASU", 8, 4 },
123 { 0x5, "SAMD11D12ASU", 4, 4 },
124 { 0x6, "SAMD11C14A", 16, 4 },
125 { 0x7, "SAMD11C13A", 8, 4 },
126 { 0x8, "SAMD11C12A", 4, 4 },
127 { 0x9, "SAMD11D14AU", 16, 4 },
128 };
129
130 /* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
131 static const struct samd_part samd20_parts[] = {
132 { 0x0, "SAMD20J18A", 256, 32 },
133 { 0x1, "SAMD20J17A", 128, 16 },
134 { 0x2, "SAMD20J16A", 64, 8 },
135 { 0x3, "SAMD20J15A", 32, 4 },
136 { 0x4, "SAMD20J14A", 16, 2 },
137 { 0x5, "SAMD20G18A", 256, 32 },
138 { 0x6, "SAMD20G17A", 128, 16 },
139 { 0x7, "SAMD20G16A", 64, 8 },
140 { 0x8, "SAMD20G15A", 32, 4 },
141 { 0x9, "SAMD20G14A", 16, 2 },
142 { 0xA, "SAMD20E18A", 256, 32 },
143 { 0xB, "SAMD20E17A", 128, 16 },
144 { 0xC, "SAMD20E16A", 64, 8 },
145 { 0xD, "SAMD20E15A", 32, 4 },
146 { 0xE, "SAMD20E14A", 16, 2 },
147 };
148
149 /* Known SAMD21 parts. */
150 static const struct samd_part samd21_parts[] = {
151 { 0x0, "SAMD21J18A", 256, 32 },
152 { 0x1, "SAMD21J17A", 128, 16 },
153 { 0x2, "SAMD21J16A", 64, 8 },
154 { 0x3, "SAMD21J15A", 32, 4 },
155 { 0x4, "SAMD21J14A", 16, 2 },
156 { 0x5, "SAMD21G18A", 256, 32 },
157 { 0x6, "SAMD21G17A", 128, 16 },
158 { 0x7, "SAMD21G16A", 64, 8 },
159 { 0x8, "SAMD21G15A", 32, 4 },
160 { 0x9, "SAMD21G14A", 16, 2 },
161 { 0xA, "SAMD21E18A", 256, 32 },
162 { 0xB, "SAMD21E17A", 128, 16 },
163 { 0xC, "SAMD21E16A", 64, 8 },
164 { 0xD, "SAMD21E15A", 32, 4 },
165 { 0xE, "SAMD21E14A", 16, 2 },
166
167 /* SAMR21 parts have integrated SAMD21 with a radio */
168 { 0x18, "SAMR21G19A", 256, 32 }, /* with 512k of serial flash */
169 { 0x19, "SAMR21G18A", 256, 32 },
170 { 0x1A, "SAMR21G17A", 128, 32 },
171 { 0x1B, "SAMR21G16A", 64, 16 },
172 { 0x1C, "SAMR21E18A", 256, 32 },
173 { 0x1D, "SAMR21E17A", 128, 32 },
174 { 0x1E, "SAMR21E16A", 64, 16 },
175
176 /* SAMD21 B Variants (Table 3-7 from rev I of datasheet) */
177 { 0x20, "SAMD21J16B", 64, 8 },
178 { 0x21, "SAMD21J15B", 32, 4 },
179 { 0x23, "SAMD21G16B", 64, 8 },
180 { 0x24, "SAMD21G15B", 32, 4 },
181 { 0x26, "SAMD21E16B", 64, 8 },
182 { 0x27, "SAMD21E15B", 32, 4 },
183
184 /* SAMD21 D and L Variants (from Errata)
185 http://ww1.microchip.com/downloads/en/DeviceDoc/
186 SAM-D21-Family-Silicon-Errata-and-DataSheet-Clarification-DS80000760D.pdf */
187 { 0x55, "SAMD21E16BU", 64, 8 },
188 { 0x56, "SAMD21E15BU", 32, 4 },
189 { 0x57, "SAMD21G16L", 64, 8 },
190 { 0x3E, "SAMD21E16L", 64, 8 },
191 { 0x3F, "SAMD21E15L", 32, 4 },
192 { 0x62, "SAMD21E16CU", 64, 8 },
193 { 0x63, "SAMD21E15CU", 32, 4 },
194 { 0x92, "SAMD21J17D", 128, 16 },
195 { 0x93, "SAMD21G17D", 128, 16 },
196 { 0x94, "SAMD21E17D", 128, 16 },
197 { 0x95, "SAMD21E17DU", 128, 16 },
198 { 0x96, "SAMD21G17L", 128, 16 },
199 { 0x97, "SAMD21E17L", 128, 16 },
200
201 /* Known SAMDA1 parts.
202 SAMD-A1 series uses the same series identifier like the SAMD21
203 taken from http://ww1.microchip.com/downloads/en/DeviceDoc/40001895A.pdf (pages 14-17) */
204 { 0x29, "SAMDA1J16A", 64, 8 },
205 { 0x2A, "SAMDA1J15A", 32, 4 },
206 { 0x2B, "SAMDA1J14A", 16, 4 },
207 { 0x2C, "SAMDA1G16A", 64, 8 },
208 { 0x2D, "SAMDA1G15A", 32, 4 },
209 { 0x2E, "SAMDA1G14A", 16, 4 },
210 { 0x2F, "SAMDA1E16A", 64, 8 },
211 { 0x30, "SAMDA1E15A", 32, 4 },
212 { 0x31, "SAMDA1E14A", 16, 4 },
213 { 0x64, "SAMDA1J16B", 64, 8 },
214 { 0x65, "SAMDA1J15B", 32, 4 },
215 { 0x66, "SAMDA1J14B", 16, 4 },
216 { 0x67, "SAMDA1G16B", 64, 8 },
217 { 0x68, "SAMDA1G15B", 32, 4 },
218 { 0x69, "SAMDA1G14B", 16, 4 },
219 { 0x6A, "SAMDA1E16B", 64, 8 },
220 { 0x6B, "SAMDA1E15B", 32, 4 },
221 { 0x6C, "SAMDA1E14B", 16, 4 },
222 };
223
224 /* Known SAML21 parts. */
225 static const struct samd_part saml21_parts[] = {
226 { 0x00, "SAML21J18A", 256, 32 },
227 { 0x01, "SAML21J17A", 128, 16 },
228 { 0x02, "SAML21J16A", 64, 8 },
229 { 0x05, "SAML21G18A", 256, 32 },
230 { 0x06, "SAML21G17A", 128, 16 },
231 { 0x07, "SAML21G16A", 64, 8 },
232 { 0x0A, "SAML21E18A", 256, 32 },
233 { 0x0B, "SAML21E17A", 128, 16 },
234 { 0x0C, "SAML21E16A", 64, 8 },
235 { 0x0D, "SAML21E15A", 32, 4 },
236 { 0x0F, "SAML21J18B", 256, 32 },
237 { 0x10, "SAML21J17B", 128, 16 },
238 { 0x11, "SAML21J16B", 64, 8 },
239 { 0x14, "SAML21G18B", 256, 32 },
240 { 0x15, "SAML21G17B", 128, 16 },
241 { 0x16, "SAML21G16B", 64, 8 },
242 { 0x19, "SAML21E18B", 256, 32 },
243 { 0x1A, "SAML21E17B", 128, 16 },
244 { 0x1B, "SAML21E16B", 64, 8 },
245 { 0x1C, "SAML21E15B", 32, 4 },
246
247 /* SAMR30 parts have integrated SAML21 with a radio */
248 { 0x1E, "SAMR30G18A", 256, 32 },
249 { 0x1F, "SAMR30E18A", 256, 32 },
250
251 /* SAMR34/R35 parts have integrated SAML21 with a lora radio */
252 { 0x28, "SAMR34J18", 256, 32 },
253 };
254
255 /* Known SAML22 parts. */
256 static const struct samd_part saml22_parts[] = {
257 { 0x00, "SAML22N18A", 256, 32 },
258 { 0x01, "SAML22N17A", 128, 16 },
259 { 0x02, "SAML22N16A", 64, 8 },
260 { 0x05, "SAML22J18A", 256, 32 },
261 { 0x06, "SAML22J17A", 128, 16 },
262 { 0x07, "SAML22J16A", 64, 8 },
263 { 0x0A, "SAML22G18A", 256, 32 },
264 { 0x0B, "SAML22G17A", 128, 16 },
265 { 0x0C, "SAML22G16A", 64, 8 },
266 };
267
268 /* Known SAMC20 parts. */
269 static const struct samd_part samc20_parts[] = {
270 { 0x00, "SAMC20J18A", 256, 32 },
271 { 0x01, "SAMC20J17A", 128, 16 },
272 { 0x02, "SAMC20J16A", 64, 8 },
273 { 0x03, "SAMC20J15A", 32, 4 },
274 { 0x05, "SAMC20G18A", 256, 32 },
275 { 0x06, "SAMC20G17A", 128, 16 },
276 { 0x07, "SAMC20G16A", 64, 8 },
277 { 0x08, "SAMC20G15A", 32, 4 },
278 { 0x0A, "SAMC20E18A", 256, 32 },
279 { 0x0B, "SAMC20E17A", 128, 16 },
280 { 0x0C, "SAMC20E16A", 64, 8 },
281 { 0x0D, "SAMC20E15A", 32, 4 },
282 { 0x20, "SAMC20N18A", 256, 32 },
283 { 0x21, "SAMC20N17A", 128, 16 },
284 };
285
286 /* Known SAMC21 parts. */
287 static const struct samd_part samc21_parts[] = {
288 { 0x00, "SAMC21J18A", 256, 32 },
289 { 0x01, "SAMC21J17A", 128, 16 },
290 { 0x02, "SAMC21J16A", 64, 8 },
291 { 0x03, "SAMC21J15A", 32, 4 },
292 { 0x05, "SAMC21G18A", 256, 32 },
293 { 0x06, "SAMC21G17A", 128, 16 },
294 { 0x07, "SAMC21G16A", 64, 8 },
295 { 0x08, "SAMC21G15A", 32, 4 },
296 { 0x0A, "SAMC21E18A", 256, 32 },
297 { 0x0B, "SAMC21E17A", 128, 16 },
298 { 0x0C, "SAMC21E16A", 64, 8 },
299 { 0x0D, "SAMC21E15A", 32, 4 },
300 { 0x20, "SAMC21N18A", 256, 32 },
301 { 0x21, "SAMC21N17A", 128, 16 },
302 };
303
304 /* Each family of parts contains a parts table in the DEVSEL field of DID. The
305 * processor ID, family ID, and series ID are used to determine which exact
306 * family this is and then we can use the corresponding table. */
307 struct samd_family {
308 uint8_t processor;
309 uint8_t family;
310 uint8_t series;
311 const struct samd_part *parts;
312 size_t num_parts;
313 uint64_t nvm_userrow_res_mask; /* protect bits which are reserved, 0 -> protect */
314 };
315
316 /* Known SAMD families */
317 static const struct samd_family samd_families[] = {
318 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
319 samd20_parts, ARRAY_SIZE(samd20_parts),
320 (uint64_t)0xFFFF01FFFE01FF77 },
321 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
322 samd21_parts, ARRAY_SIZE(samd21_parts),
323 (uint64_t)0xFFFF01FFFE01FF77 },
324 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_09,
325 samd09_parts, ARRAY_SIZE(samd09_parts),
326 (uint64_t)0xFFFF01FFFE01FF77 },
327 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
328 samd10_parts, ARRAY_SIZE(samd10_parts),
329 (uint64_t)0xFFFF01FFFE01FF77 },
330 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
331 samd11_parts, ARRAY_SIZE(samd11_parts),
332 (uint64_t)0xFFFF01FFFE01FF77 },
333 { SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_21,
334 saml21_parts, ARRAY_SIZE(saml21_parts),
335 (uint64_t)0xFFFF03FFFC01FF77 },
336 { SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_22,
337 saml22_parts, ARRAY_SIZE(saml22_parts),
338 (uint64_t)0xFFFF03FFFC01FF77 },
339 { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_20,
340 samc20_parts, ARRAY_SIZE(samc20_parts),
341 (uint64_t)0xFFFF03FFFC01FF77 },
342 { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_21,
343 samc21_parts, ARRAY_SIZE(samc21_parts),
344 (uint64_t)0xFFFF03FFFC01FF77 },
345 };
346
347 struct samd_info {
348 uint32_t page_size;
349 int num_pages;
350 int sector_size;
351 int prot_block_size;
352
353 bool probed;
354 struct target *target;
355 };
356
357
358 /**
359 * Gives the family structure to specific device id.
360 * @param id The id of the device.
361 * @return On failure NULL, otherwise a pointer to the structure.
362 */
363 static const struct samd_family *samd_find_family(uint32_t id)
364 {
365 uint8_t processor = SAMD_GET_PROCESSOR(id);
366 uint8_t family = SAMD_GET_FAMILY(id);
367 uint8_t series = SAMD_GET_SERIES(id);
368
369 for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
370 if (samd_families[i].processor == processor &&
371 samd_families[i].series == series &&
372 samd_families[i].family == family)
373 return &samd_families[i];
374 }
375
376 return NULL;
377 }
378
379 /**
380 * Gives the part structure to specific device id.
381 * @param id The id of the device.
382 * @return On failure NULL, otherwise a pointer to the structure.
383 */
384 static const struct samd_part *samd_find_part(uint32_t id)
385 {
386 uint8_t devsel = SAMD_GET_DEVSEL(id);
387 const struct samd_family *family = samd_find_family(id);
388 if (family == NULL)
389 return NULL;
390
391 for (unsigned i = 0; i < family->num_parts; i++) {
392 if (family->parts[i].id == devsel)
393 return &family->parts[i];
394 }
395
396 return NULL;
397 }
398
399 static int samd_protect_check(struct flash_bank *bank)
400 {
401 int res;
402 uint16_t lock;
403
404 res = target_read_u16(bank->target,
405 SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
406 if (res != ERROR_OK)
407 return res;
408
409 /* Lock bits are active-low */
410 for (unsigned int prot_block = 0; prot_block < bank->num_prot_blocks; prot_block++)
411 bank->prot_blocks[prot_block].is_protected = !(lock & (1u<<prot_block));
412
413 return ERROR_OK;
414 }
415
416 static int samd_get_flash_page_info(struct target *target,
417 uint32_t *sizep, int *nump)
418 {
419 int res;
420 uint32_t param;
421
422 res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
423 if (res == ERROR_OK) {
424 /* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
425 * so 0 is 8KB and 7 is 1024KB. */
426 if (sizep)
427 *sizep = (8 << ((param >> 16) & 0x7));
428 /* The NVMP field (bits 15:0) indicates the total number of pages */
429 if (nump)
430 *nump = param & 0xFFFF;
431 } else {
432 LOG_ERROR("Couldn't read NVM Parameters register");
433 }
434
435 return res;
436 }
437
438 static int samd_probe(struct flash_bank *bank)
439 {
440 uint32_t id;
441 int res;
442 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
443 const struct samd_part *part;
444
445 if (chip->probed)
446 return ERROR_OK;
447
448 res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
449 if (res != ERROR_OK) {
450 LOG_ERROR("Couldn't read Device ID register");
451 return res;
452 }
453
454 part = samd_find_part(id);
455 if (part == NULL) {
456 LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32, id);
457 return ERROR_FAIL;
458 }
459
460 bank->size = part->flash_kb * 1024;
461
462 res = samd_get_flash_page_info(bank->target, &chip->page_size,
463 &chip->num_pages);
464 if (res != ERROR_OK) {
465 LOG_ERROR("Couldn't determine Flash page size");
466 return res;
467 }
468
469 /* Sanity check: the total flash size in the DSU should match the page size
470 * multiplied by the number of pages. */
471 if (bank->size != chip->num_pages * chip->page_size) {
472 LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
473 "Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
474 part->flash_kb, chip->num_pages, chip->page_size);
475 }
476
477 /* Erase granularity = 1 row = 4 pages */
478 chip->sector_size = chip->page_size * 4;
479
480 /* Allocate the sector table */
481 bank->num_sectors = chip->num_pages / 4;
482 bank->sectors = alloc_block_array(0, chip->sector_size, bank->num_sectors);
483 if (!bank->sectors)
484 return ERROR_FAIL;
485
486 /* 16 protection blocks per device */
487 chip->prot_block_size = bank->size / SAMD_NUM_PROT_BLOCKS;
488
489 /* Allocate the table of protection blocks */
490 bank->num_prot_blocks = SAMD_NUM_PROT_BLOCKS;
491 bank->prot_blocks = alloc_block_array(0, chip->prot_block_size, bank->num_prot_blocks);
492 if (!bank->prot_blocks)
493 return ERROR_FAIL;
494
495 samd_protect_check(bank);
496
497 /* Done */
498 chip->probed = true;
499
500 LOG_INFO("SAMD MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
501 part->flash_kb, part->ram_kb);
502
503 return ERROR_OK;
504 }
505
506 static int samd_check_error(struct target *target)
507 {
508 int ret, ret2;
509 uint16_t status;
510
511 ret = target_read_u16(target,
512 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
513 if (ret != ERROR_OK) {
514 LOG_ERROR("Can't read NVM status");
515 return ret;
516 }
517
518 if ((status & 0x001C) == 0)
519 return ERROR_OK;
520
521 if (status & (1 << 4)) { /* NVME */
522 LOG_ERROR("SAMD: NVM Error");
523 ret = ERROR_FLASH_OPERATION_FAILED;
524 }
525
526 if (status & (1 << 3)) { /* LOCKE */
527 LOG_ERROR("SAMD: NVM lock error");
528 ret = ERROR_FLASH_PROTECTED;
529 }
530
531 if (status & (1 << 2)) { /* PROGE */
532 LOG_ERROR("SAMD: NVM programming error");
533 ret = ERROR_FLASH_OPER_UNSUPPORTED;
534 }
535
536 /* Clear the error conditions by writing a one to them */
537 ret2 = target_write_u16(target,
538 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
539 if (ret2 != ERROR_OK)
540 LOG_ERROR("Can't clear NVM error conditions");
541
542 return ret;
543 }
544
545 static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
546 {
547 int res;
548
549 if (target->state != TARGET_HALTED) {
550 LOG_ERROR("Target not halted");
551 return ERROR_TARGET_NOT_HALTED;
552 }
553
554 /* Issue the NVM command */
555 res = target_write_u16(target,
556 SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
557 if (res != ERROR_OK)
558 return res;
559
560 /* Check to see if the NVM command resulted in an error condition. */
561 return samd_check_error(target);
562 }
563
564 /**
565 * Erases a flash-row at the given address.
566 * @param target Pointer to the target structure.
567 * @param address The address of the row.
568 * @return On success ERROR_OK, on failure an errorcode.
569 */
570 static int samd_erase_row(struct target *target, uint32_t address)
571 {
572 int res;
573
574 /* Set an address contained in the row to be erased */
575 res = target_write_u32(target,
576 SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
577
578 /* Issue the Erase Row command to erase that row. */
579 if (res == ERROR_OK)
580 res = samd_issue_nvmctrl_command(target,
581 address == SAMD_USER_ROW ? SAMD_NVM_CMD_EAR : SAMD_NVM_CMD_ER);
582
583 if (res != ERROR_OK) {
584 LOG_ERROR("Failed to erase row containing %08" PRIx32, address);
585 return ERROR_FAIL;
586 }
587
588 return ERROR_OK;
589 }
590
591 /**
592 * Returns the bitmask of reserved bits in register.
593 * @param target Pointer to the target structure.
594 * @param mask Bitmask, 0 -> value stays untouched.
595 * @return On success ERROR_OK, on failure an errorcode.
596 */
597 static int samd_get_reservedmask(struct target *target, uint64_t *mask)
598 {
599 int res;
600 /* Get the devicetype */
601 uint32_t id;
602 res = target_read_u32(target, SAMD_DSU + SAMD_DSU_DID, &id);
603 if (res != ERROR_OK) {
604 LOG_ERROR("Couldn't read Device ID register");
605 return res;
606 }
607 const struct samd_family *family;
608 family = samd_find_family(id);
609 if (family == NULL) {
610 LOG_ERROR("Couldn't determine device family");
611 return ERROR_FAIL;
612 }
613 *mask = family->nvm_userrow_res_mask;
614 return ERROR_OK;
615 }
616
617 static int read_userrow(struct target *target, uint64_t *userrow)
618 {
619 int res;
620 uint8_t buffer[8];
621
622 res = target_read_memory(target, SAMD_USER_ROW, 4, 2, buffer);
623 if (res != ERROR_OK)
624 return res;
625
626 *userrow = target_buffer_get_u64(target, buffer);
627 return ERROR_OK;
628 }
629
630 /**
631 * Modify the contents of the User Row in Flash. The User Row itself
632 * has a size of one page and contains a combination of "fuses" and
633 * calibration data. Bits which have a value of zero in the mask will
634 * not be changed. Up to now devices only use the first 64 bits.
635 * @param target Pointer to the target structure.
636 * @param value_input The value to write.
637 * @param value_mask Bitmask, 0 -> value stays untouched.
638 * @return On success ERROR_OK, on failure an errorcode.
639 */
640 static int samd_modify_user_row_masked(struct target *target,
641 uint64_t value_input, uint64_t value_mask)
642 {
643 int res;
644 uint32_t nvm_ctrlb;
645 bool manual_wp = true;
646
647 /* Retrieve the MCU's page size, in bytes. This is also the size of the
648 * entire User Row. */
649 uint32_t page_size;
650 res = samd_get_flash_page_info(target, &page_size, NULL);
651 if (res != ERROR_OK) {
652 LOG_ERROR("Couldn't determine Flash page size");
653 return res;
654 }
655
656 /* Make sure the size is sane. */
657 assert(page_size <= SAMD_PAGE_SIZE_MAX &&
658 page_size >= sizeof(value_input));
659
660 uint8_t buf[SAMD_PAGE_SIZE_MAX];
661 /* Read the user row (comprising one page) by words. */
662 res = target_read_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
663 if (res != ERROR_OK)
664 return res;
665
666 uint64_t value_device;
667 res = read_userrow(target, &value_device);
668 if (res != ERROR_OK)
669 return res;
670 uint64_t value_new = (value_input & value_mask) | (value_device & ~value_mask);
671
672 /* We will need to erase before writing if the new value needs a '1' in any
673 * position for which the current value had a '0'. Otherwise we can avoid
674 * erasing. */
675 if ((~value_device) & value_new) {
676 res = samd_erase_row(target, SAMD_USER_ROW);
677 if (res != ERROR_OK) {
678 LOG_ERROR("Couldn't erase user row");
679 return res;
680 }
681 }
682
683 /* Modify */
684 target_buffer_set_u64(target, buf, value_new);
685
686 /* Write the page buffer back out to the target. */
687 res = target_write_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
688 if (res != ERROR_OK)
689 return res;
690
691 /* Check if we need to do manual page write commands */
692 res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
693 if (res == ERROR_OK)
694 manual_wp = (nvm_ctrlb & SAMD_NVM_CTRLB_MANW) != 0;
695 else {
696 LOG_ERROR("Read of NVM register CTRKB failed.");
697 return ERROR_FAIL;
698 }
699 if (manual_wp) {
700 /* Trigger flash write */
701 res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_WAP);
702 } else {
703 res = samd_check_error(target);
704 }
705
706 return res;
707 }
708
709 /**
710 * Modifies the user row register to the given value.
711 * @param target Pointer to the target structure.
712 * @param value The value to write.
713 * @param startb The bit-offset by which the given value is shifted.
714 * @param endb The bit-offset of the last bit in value to write.
715 * @return On success ERROR_OK, on failure an errorcode.
716 */
717 static int samd_modify_user_row(struct target *target, uint64_t value,
718 uint8_t startb, uint8_t endb)
719 {
720 uint64_t mask = 0;
721 int i;
722 for (i = startb ; i <= endb ; i++)
723 mask |= ((uint64_t)1) << i;
724
725 return samd_modify_user_row_masked(target, value << startb, mask);
726 }
727
728 static int samd_protect(struct flash_bank *bank, int set,
729 unsigned int first, unsigned int last)
730 {
731 int res = ERROR_OK;
732
733 /* We can issue lock/unlock region commands with the target running but
734 * the settings won't persist unless we're able to modify the LOCK regions
735 * and that requires the target to be halted. */
736 if (bank->target->state != TARGET_HALTED) {
737 LOG_ERROR("Target not halted");
738 return ERROR_TARGET_NOT_HALTED;
739 }
740
741 for (unsigned int prot_block = first; prot_block <= last; prot_block++) {
742 if (set != bank->prot_blocks[prot_block].is_protected) {
743 /* Load an address that is within this protection block (we use offset 0) */
744 res = target_write_u32(bank->target,
745 SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
746 bank->prot_blocks[prot_block].offset >> 1);
747 if (res != ERROR_OK)
748 goto exit;
749
750 /* Tell the controller to lock that block */
751 res = samd_issue_nvmctrl_command(bank->target,
752 set ? SAMD_NVM_CMD_LR : SAMD_NVM_CMD_UR);
753 if (res != ERROR_OK)
754 goto exit;
755 }
756 }
757
758 /* We've now applied our changes, however they will be undone by the next
759 * reset unless we also apply them to the LOCK bits in the User Page. The
760 * LOCK bits start at bit 48, corresponding to Sector 0 and end with bit 63,
761 * corresponding to Sector 15. A '1' means unlocked and a '0' means
762 * locked. See Table 9-3 in the SAMD20 datasheet for more details. */
763
764 res = samd_modify_user_row(bank->target,
765 set ? (uint64_t)0 : (uint64_t)UINT64_MAX,
766 48 + first, 48 + last);
767 if (res != ERROR_OK)
768 LOG_WARNING("SAMD: protect settings were not made persistent!");
769
770 res = ERROR_OK;
771
772 exit:
773 samd_protect_check(bank);
774
775 return res;
776 }
777
778 static int samd_erase(struct flash_bank *bank, unsigned int first,
779 unsigned int last)
780 {
781 int res;
782 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
783
784 if (bank->target->state != TARGET_HALTED) {
785 LOG_ERROR("Target not halted");
786
787 return ERROR_TARGET_NOT_HALTED;
788 }
789
790 if (!chip->probed) {
791 if (samd_probe(bank) != ERROR_OK)
792 return ERROR_FLASH_BANK_NOT_PROBED;
793 }
794
795 /* For each sector to be erased */
796 for (unsigned int s = first; s <= last; s++) {
797 res = samd_erase_row(bank->target, bank->sectors[s].offset);
798 if (res != ERROR_OK) {
799 LOG_ERROR("SAMD: failed to erase sector %d at 0x%08" PRIx32, s, bank->sectors[s].offset);
800 return res;
801 }
802 }
803
804 return ERROR_OK;
805 }
806
807
808 static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
809 uint32_t offset, uint32_t count)
810 {
811 int res;
812 uint32_t nvm_ctrlb;
813 uint32_t address;
814 uint32_t pg_offset;
815 uint32_t nb;
816 uint32_t nw;
817 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
818 uint8_t *pb = NULL;
819 bool manual_wp;
820
821 if (bank->target->state != TARGET_HALTED) {
822 LOG_ERROR("Target not halted");
823 return ERROR_TARGET_NOT_HALTED;
824 }
825
826 if (!chip->probed) {
827 if (samd_probe(bank) != ERROR_OK)
828 return ERROR_FLASH_BANK_NOT_PROBED;
829 }
830
831 /* Check if we need to do manual page write commands */
832 res = target_read_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
833
834 if (res != ERROR_OK)
835 return res;
836
837 if (nvm_ctrlb & SAMD_NVM_CTRLB_MANW)
838 manual_wp = true;
839 else
840 manual_wp = false;
841
842 res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_PBC);
843 if (res != ERROR_OK) {
844 LOG_ERROR("%s: %d", __func__, __LINE__);
845 return res;
846 }
847
848 while (count) {
849 nb = chip->page_size - offset % chip->page_size;
850 if (count < nb)
851 nb = count;
852
853 address = bank->base + offset;
854 pg_offset = offset % chip->page_size;
855
856 if (offset % 4 || (offset + nb) % 4) {
857 /* Either start or end of write is not word aligned */
858 if (!pb) {
859 pb = malloc(chip->page_size);
860 if (!pb)
861 return ERROR_FAIL;
862 }
863
864 /* Set temporary page buffer to 0xff and overwrite the relevant part */
865 memset(pb, 0xff, chip->page_size);
866 memcpy(pb + pg_offset, buffer, nb);
867
868 /* Align start address to a word boundary */
869 address -= offset % 4;
870 pg_offset -= offset % 4;
871 assert(pg_offset % 4 == 0);
872
873 /* Extend length to whole words */
874 nw = (nb + offset % 4 + 3) / 4;
875 assert(pg_offset + 4 * nw <= chip->page_size);
876
877 /* Now we have original data extended by 0xff bytes
878 * to the nearest word boundary on both start and end */
879 res = target_write_memory(bank->target, address, 4, nw, pb + pg_offset);
880 } else {
881 assert(nb % 4 == 0);
882 nw = nb / 4;
883 assert(pg_offset + 4 * nw <= chip->page_size);
884
885 /* Word aligned data, use direct write from buffer */
886 res = target_write_memory(bank->target, address, 4, nw, buffer);
887 }
888 if (res != ERROR_OK) {
889 LOG_ERROR("%s: %d", __func__, __LINE__);
890 goto free_pb;
891 }
892
893 /* Devices with errata 13134 have automatic page write enabled by default
894 * For other devices issue a write page CMD to the NVM
895 * If the page has not been written up to the last word
896 * then issue CMD_WP always */
897 if (manual_wp || pg_offset + 4 * nw < chip->page_size) {
898 res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_WP);
899 } else {
900 /* Access through AHB is stalled while flash is being programmed */
901 usleep(200);
902
903 res = samd_check_error(bank->target);
904 }
905
906 if (res != ERROR_OK) {
907 LOG_ERROR("%s: write failed at address 0x%08" PRIx32, __func__, address);
908 goto free_pb;
909 }
910
911 /* We're done with the page contents */
912 count -= nb;
913 offset += nb;
914 buffer += nb;
915 }
916
917 free_pb:
918 if (pb)
919 free(pb);
920
921 return res;
922 }
923
924 FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
925 {
926 if (bank->base != SAMD_FLASH) {
927 LOG_ERROR("Address " TARGET_ADDR_FMT
928 " invalid bank address (try 0x%08" PRIx32
929 "[at91samd series] )",
930 bank->base, SAMD_FLASH);
931 return ERROR_FAIL;
932 }
933
934 struct samd_info *chip;
935 chip = calloc(1, sizeof(*chip));
936 if (!chip) {
937 LOG_ERROR("No memory for flash bank chip info");
938 return ERROR_FAIL;
939 }
940
941 chip->target = bank->target;
942 chip->probed = false;
943
944 bank->driver_priv = chip;
945
946 return ERROR_OK;
947 }
948
949 COMMAND_HANDLER(samd_handle_info_command)
950 {
951 return ERROR_OK;
952 }
953
954 COMMAND_HANDLER(samd_handle_chip_erase_command)
955 {
956 struct target *target = get_current_target(CMD_CTX);
957 int res = ERROR_FAIL;
958
959 if (target) {
960 /* Enable access to the DSU by disabling the write protect bit */
961 target_write_u32(target, SAMD_PAC1, (1<<1));
962 /* intentionally without error checking - not accessible on secured chip */
963
964 /* Tell the DSU to perform a full chip erase. It takes about 240ms to
965 * perform the erase. */
966 res = target_write_u8(target, SAMD_DSU + SAMD_DSU_CTRL_EXT, (1<<4));
967 if (res == ERROR_OK)
968 command_print(CMD, "chip erase started");
969 else
970 command_print(CMD, "write to DSU CTRL failed");
971 }
972
973 return res;
974 }
975
976 COMMAND_HANDLER(samd_handle_set_security_command)
977 {
978 int res = ERROR_OK;
979 struct target *target = get_current_target(CMD_CTX);
980
981 if (CMD_ARGC < 1 || (CMD_ARGC >= 1 && (strcmp(CMD_ARGV[0], "enable")))) {
982 command_print(CMD, "supply the \"enable\" argument to proceed.");
983 return ERROR_COMMAND_SYNTAX_ERROR;
984 }
985
986 if (target) {
987 if (target->state != TARGET_HALTED) {
988 LOG_ERROR("Target not halted");
989 return ERROR_TARGET_NOT_HALTED;
990 }
991
992 res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_SSB);
993
994 /* Check (and clear) error conditions */
995 if (res == ERROR_OK)
996 command_print(CMD, "chip secured on next power-cycle");
997 else
998 command_print(CMD, "failed to secure chip");
999 }
1000
1001 return res;
1002 }
1003
1004 COMMAND_HANDLER(samd_handle_eeprom_command)
1005 {
1006 int res = ERROR_OK;
1007 struct target *target = get_current_target(CMD_CTX);
1008
1009 if (target) {
1010 if (target->state != TARGET_HALTED) {
1011 LOG_ERROR("Target not halted");
1012 return ERROR_TARGET_NOT_HALTED;
1013 }
1014
1015 if (CMD_ARGC >= 1) {
1016 int val = atoi(CMD_ARGV[0]);
1017 uint32_t code;
1018
1019 if (val == 0)
1020 code = 7;
1021 else {
1022 /* Try to match size in bytes with corresponding size code */
1023 for (code = 0; code <= 6; code++) {
1024 if (val == (2 << (13 - code)))
1025 break;
1026 }
1027
1028 if (code > 6) {
1029 command_print(CMD, "Invalid EEPROM size. Please see "
1030 "datasheet for a list valid sizes.");
1031 return ERROR_COMMAND_SYNTAX_ERROR;
1032 }
1033 }
1034
1035 res = samd_modify_user_row(target, code, 4, 6);
1036 } else {
1037 uint16_t val;
1038 res = target_read_u16(target, SAMD_USER_ROW, &val);
1039 if (res == ERROR_OK) {
1040 uint32_t size = ((val >> 4) & 0x7); /* grab size code */
1041
1042 if (size == 0x7)
1043 command_print(CMD, "EEPROM is disabled");
1044 else {
1045 /* Otherwise, 6 is 256B, 0 is 16KB */
1046 command_print(CMD, "EEPROM size is %u bytes",
1047 (2 << (13 - size)));
1048 }
1049 }
1050 }
1051 }
1052
1053 return res;
1054 }
1055
1056 static COMMAND_HELPER(get_u64_from_hexarg, unsigned int num, uint64_t *value)
1057 {
1058 if (num >= CMD_ARGC) {
1059 command_print(CMD, "Too few Arguments.");
1060 return ERROR_COMMAND_SYNTAX_ERROR;
1061 }
1062
1063 if (strlen(CMD_ARGV[num]) >= 3 &&
1064 CMD_ARGV[num][0] == '0' &&
1065 CMD_ARGV[num][1] == 'x') {
1066 char *check = NULL;
1067 *value = strtoull(&(CMD_ARGV[num][2]), &check, 16);
1068 if ((value == 0 && errno == ERANGE) ||
1069 check == NULL || *check != 0) {
1070 command_print(CMD, "Invalid 64-bit hex value in argument %d.",
1071 num + 1);
1072 return ERROR_COMMAND_SYNTAX_ERROR;
1073 }
1074 } else {
1075 command_print(CMD, "Argument %d needs to be a hex value.", num + 1);
1076 return ERROR_COMMAND_SYNTAX_ERROR;
1077 }
1078 return ERROR_OK;
1079 }
1080
1081 COMMAND_HANDLER(samd_handle_nvmuserrow_command)
1082 {
1083 int res = ERROR_OK;
1084 struct target *target = get_current_target(CMD_CTX);
1085
1086 if (target) {
1087 if (CMD_ARGC > 2) {
1088 command_print(CMD, "Too much Arguments given.");
1089 return ERROR_COMMAND_SYNTAX_ERROR;
1090 }
1091
1092 if (CMD_ARGC > 0) {
1093 if (target->state != TARGET_HALTED) {
1094 LOG_ERROR("Target not halted.");
1095 return ERROR_TARGET_NOT_HALTED;
1096 }
1097
1098 uint64_t mask;
1099 res = samd_get_reservedmask(target, &mask);
1100 if (res != ERROR_OK) {
1101 LOG_ERROR("Couldn't determine the mask for reserved bits.");
1102 return ERROR_FAIL;
1103 }
1104 mask &= NVMUSERROW_LOCKBIT_MASK;
1105
1106 uint64_t value;
1107 res = CALL_COMMAND_HANDLER(get_u64_from_hexarg, 0, &value);
1108 if (res != ERROR_OK)
1109 return res;
1110 if (CMD_ARGC == 2) {
1111 uint64_t mask_temp;
1112 res = CALL_COMMAND_HANDLER(get_u64_from_hexarg, 1, &mask_temp);
1113 if (res != ERROR_OK)
1114 return res;
1115 mask &= mask_temp;
1116 }
1117 res = samd_modify_user_row_masked(target, value, mask);
1118 if (res != ERROR_OK)
1119 return res;
1120 }
1121
1122 /* read register */
1123 uint64_t value;
1124 res = read_userrow(target, &value);
1125 if (res == ERROR_OK)
1126 command_print(CMD, "NVMUSERROW: 0x%016"PRIX64, value);
1127 else
1128 LOG_ERROR("NVMUSERROW could not be read.");
1129 }
1130 return res;
1131 }
1132
1133 COMMAND_HANDLER(samd_handle_bootloader_command)
1134 {
1135 int res = ERROR_OK;
1136 struct target *target = get_current_target(CMD_CTX);
1137
1138 if (target) {
1139 if (target->state != TARGET_HALTED) {
1140 LOG_ERROR("Target not halted");
1141 return ERROR_TARGET_NOT_HALTED;
1142 }
1143
1144 /* Retrieve the MCU's page size, in bytes. */
1145 uint32_t page_size;
1146 res = samd_get_flash_page_info(target, &page_size, NULL);
1147 if (res != ERROR_OK) {
1148 LOG_ERROR("Couldn't determine Flash page size");
1149 return res;
1150 }
1151
1152 if (CMD_ARGC >= 1) {
1153 int val = atoi(CMD_ARGV[0]);
1154 uint32_t code;
1155
1156 if (val == 0)
1157 code = 7;
1158 else {
1159 /* Try to match size in bytes with corresponding size code */
1160 for (code = 0; code <= 6; code++) {
1161 if ((unsigned int)val == (2UL << (8UL - code)) * page_size)
1162 break;
1163 }
1164
1165 if (code > 6) {
1166 command_print(CMD, "Invalid bootloader size. Please "
1167 "see datasheet for a list valid sizes.");
1168 return ERROR_COMMAND_SYNTAX_ERROR;
1169 }
1170
1171 }
1172
1173 res = samd_modify_user_row(target, code, 0, 2);
1174 } else {
1175 uint16_t val;
1176 res = target_read_u16(target, SAMD_USER_ROW, &val);
1177 if (res == ERROR_OK) {
1178 uint32_t size = (val & 0x7); /* grab size code */
1179 uint32_t nb;
1180
1181 if (size == 0x7)
1182 nb = 0;
1183 else
1184 nb = (2 << (8 - size)) * page_size;
1185
1186 /* There are 4 pages per row */
1187 command_print(CMD, "Bootloader size is %" PRIu32 " bytes (%" PRIu32 " rows)",
1188 nb, (uint32_t)(nb / (page_size * 4)));
1189 }
1190 }
1191 }
1192
1193 return res;
1194 }
1195
1196
1197
1198 COMMAND_HANDLER(samd_handle_reset_deassert)
1199 {
1200 struct target *target = get_current_target(CMD_CTX);
1201 int retval = ERROR_OK;
1202 enum reset_types jtag_reset_config = jtag_get_reset_config();
1203
1204 /* If the target has been unresponsive before, try to re-establish
1205 * communication now - CPU is held in reset by DSU, DAP is working */
1206 if (!target_was_examined(target))
1207 target_examine_one(target);
1208 target_poll(target);
1209
1210 /* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
1211 * so we just release reset held by DSU
1212 *
1213 * n_RESET (srst) clears the DP, so reenable debug and set vector catch here
1214 *
1215 * After vectreset DSU release is not needed however makes no harm
1216 */
1217 if (target->reset_halt && (jtag_reset_config & RESET_HAS_SRST)) {
1218 retval = target_write_u32(target, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1219 if (retval == ERROR_OK)
1220 retval = target_write_u32(target, DCB_DEMCR,
1221 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1222 /* do not return on error here, releasing DSU reset is more important */
1223 }
1224
1225 /* clear CPU Reset Phase Extension bit */
1226 int retval2 = target_write_u8(target, SAMD_DSU + SAMD_DSU_STATUSA, (1<<1));
1227 if (retval2 != ERROR_OK)
1228 return retval2;
1229
1230 return retval;
1231 }
1232
1233 static const struct command_registration at91samd_exec_command_handlers[] = {
1234 {
1235 .name = "dsu_reset_deassert",
1236 .handler = samd_handle_reset_deassert,
1237 .mode = COMMAND_EXEC,
1238 .help = "Deassert internal reset held by DSU.",
1239 .usage = "",
1240 },
1241 {
1242 .name = "info",
1243 .handler = samd_handle_info_command,
1244 .mode = COMMAND_EXEC,
1245 .help = "Print information about the current at91samd chip "
1246 "and its flash configuration.",
1247 .usage = "",
1248 },
1249 {
1250 .name = "chip-erase",
1251 .handler = samd_handle_chip_erase_command,
1252 .mode = COMMAND_EXEC,
1253 .help = "Erase the entire Flash by using the Chip-"
1254 "Erase feature in the Device Service Unit (DSU).",
1255 .usage = "",
1256 },
1257 {
1258 .name = "set-security",
1259 .handler = samd_handle_set_security_command,
1260 .mode = COMMAND_EXEC,
1261 .help = "Secure the chip's Flash by setting the Security Bit. "
1262 "This makes it impossible to read the Flash contents. "
1263 "The only way to undo this is to issue the chip-erase "
1264 "command.",
1265 .usage = "'enable'",
1266 },
1267 {
1268 .name = "eeprom",
1269 .usage = "[size_in_bytes]",
1270 .handler = samd_handle_eeprom_command,
1271 .mode = COMMAND_EXEC,
1272 .help = "Show or set the EEPROM size setting, stored in the User Row. "
1273 "Please see Table 20-3 of the SAMD20 datasheet for allowed values. "
1274 "Changes are stored immediately but take affect after the MCU is "
1275 "reset.",
1276 },
1277 {
1278 .name = "bootloader",
1279 .usage = "[size_in_bytes]",
1280 .handler = samd_handle_bootloader_command,
1281 .mode = COMMAND_EXEC,
1282 .help = "Show or set the bootloader size, stored in the User Row. "
1283 "Please see Table 20-2 of the SAMD20 datasheet for allowed values. "
1284 "Changes are stored immediately but take affect after the MCU is "
1285 "reset.",
1286 },
1287 {
1288 .name = "nvmuserrow",
1289 .usage = "[value] [mask]",
1290 .handler = samd_handle_nvmuserrow_command,
1291 .mode = COMMAND_EXEC,
1292 .help = "Show or set the nvmuserrow register. It is 64 bit wide "
1293 "and located at address 0x804000. Use the optional mask argument "
1294 "to prevent changes at positions where the bitvalue is zero. "
1295 "For security reasons the lock- and reserved-bits are masked out "
1296 "in background and therefore cannot be changed.",
1297 },
1298 COMMAND_REGISTRATION_DONE
1299 };
1300
1301 static const struct command_registration at91samd_command_handlers[] = {
1302 {
1303 .name = "at91samd",
1304 .mode = COMMAND_ANY,
1305 .help = "at91samd flash command group",
1306 .usage = "",
1307 .chain = at91samd_exec_command_handlers,
1308 },
1309 COMMAND_REGISTRATION_DONE
1310 };
1311
1312 const struct flash_driver at91samd_flash = {
1313 .name = "at91samd",
1314 .commands = at91samd_command_handlers,
1315 .flash_bank_command = samd_flash_bank_command,
1316 .erase = samd_erase,
1317 .protect = samd_protect,
1318 .write = samd_write,
1319 .read = default_flash_read,
1320 .probe = samd_probe,
1321 .auto_probe = samd_probe,
1322 .erase_check = default_flash_blank_check,
1323 .protect_check = samd_protect_check,
1324 .free_driver_priv = default_flash_free_driver_priv,
1325 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)