flash: use proper format with uint32_t
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <target/arm7_9_common.h>
32 #include <target/armv7m.h>
33 #include <target/mips32.h>
34 #include <helper/binarybuffer.h>
35 #include <target/algorithm.h>
36
37 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
38 #define CFI_MAX_INTEL_CODESIZE 256
39
40 /* some id-types with specific handling */
41 #define AT49BV6416 0x00d6
42 #define AT49BV6416T 0x00d2
43
44 static const struct cfi_unlock_addresses cfi_unlock_addresses[] = {
45 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
46 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
47 };
48
49 static const int cfi_status_poll_mask_dq6_dq7 = CFI_STATUS_POLL_MASK_DQ6_DQ7;
50
51 /* CFI fixups forward declarations */
52 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param);
53 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param);
54 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param);
55 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param);
56 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param);
57
58 /* fixup after reading cmdset 0002 primary query table */
59 static const struct cfi_fixup cfi_0002_fixups[] = {
60 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
61 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
62 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
63 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
64 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
65 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
66 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
67 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
68 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
69 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
70 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
71 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
72 {CFI_MFR_SST, 0x235f, cfi_fixup_0002_polling_bits, /* 39VF3201C */
73 &cfi_status_poll_mask_dq6_dq7},
74 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
75 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
76 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
77 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
78 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
79 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
80 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
81 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
82 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
83 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
84 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
85 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
86 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
87 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
88 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
89 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
90 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
91 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
92 {0, 0, NULL, NULL}
93 };
94
95 /* fixup after reading cmdset 0001 primary query table */
96 static const struct cfi_fixup cfi_0001_fixups[] = {
97 {0, 0, NULL, NULL}
98 };
99
100 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
101 {
102 struct cfi_flash_bank *cfi_info = bank->driver_priv;
103
104 for (const struct cfi_fixup *f = fixups; f->fixup; f++) {
105 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
106 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
107 f->fixup(bank, f->param);
108 }
109 }
110
111 uint32_t cfi_flash_address(struct flash_bank *bank, int sector, uint32_t offset)
112 {
113 struct cfi_flash_bank *cfi_info = bank->driver_priv;
114
115 if (cfi_info->x16_as_x8)
116 offset *= 2;
117
118 /* while the sector list isn't built, only accesses to sector 0 work */
119 if (sector == 0)
120 return bank->base + offset * bank->bus_width;
121 else {
122 if (!bank->sectors) {
123 LOG_ERROR("BUG: sector list not yet built");
124 exit(-1);
125 }
126 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
127 }
128 }
129
130 static int cfi_target_write_memory(struct flash_bank *bank, target_addr_t addr,
131 uint32_t count, const uint8_t *buffer)
132 {
133 struct cfi_flash_bank *cfi_info = bank->driver_priv;
134 if (cfi_info->write_mem) {
135 return cfi_info->write_mem(bank, addr, count, buffer);
136 } else {
137 return target_write_memory(bank->target, addr, bank->bus_width,
138 count, buffer);
139 }
140 }
141
142 int cfi_target_read_memory(struct flash_bank *bank, target_addr_t addr,
143 uint32_t count, uint8_t *buffer)
144 {
145 struct cfi_flash_bank *cfi_info = bank->driver_priv;
146 if (cfi_info->read_mem) {
147 return cfi_info->read_mem(bank, addr, count, buffer);
148 } else {
149 return target_read_memory(bank->target, addr, bank->bus_width,
150 count, buffer);
151 }
152 }
153
154 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
155 {
156 struct cfi_flash_bank *cfi_info = bank->driver_priv;
157
158 /* clear whole buffer, to ensure bits that exceed the bus_width
159 * are set to zero
160 */
161 for (size_t i = 0; i < CFI_MAX_BUS_WIDTH; i++)
162 cmd_buf[i] = 0;
163
164 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
165 for (unsigned int i = bank->bus_width; i > 0; i--)
166 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
167 } else {
168 for (unsigned int i = 1; i <= bank->bus_width; i++)
169 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
170 }
171 }
172
173 int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
174 {
175 uint8_t command[CFI_MAX_BUS_WIDTH];
176
177 cfi_command(bank, cmd, command);
178 return cfi_target_write_memory(bank, address, 1, command);
179 }
180
181 /* read unsigned 8-bit value from the bank
182 * flash banks are expected to be made of similar chips
183 * the query result should be the same for all
184 */
185 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
186 {
187 struct cfi_flash_bank *cfi_info = bank->driver_priv;
188 uint8_t data[CFI_MAX_BUS_WIDTH];
189
190 int retval;
191 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
192 1, data);
193 if (retval != ERROR_OK)
194 return retval;
195
196 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
197 *val = data[0];
198 else
199 *val = data[bank->bus_width - 1];
200
201 return ERROR_OK;
202 }
203
204 /* read unsigned 8-bit value from the bank
205 * in case of a bank made of multiple chips,
206 * the individual values are ORed
207 */
208 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
209 {
210 struct cfi_flash_bank *cfi_info = bank->driver_priv;
211 uint8_t data[CFI_MAX_BUS_WIDTH];
212
213 int retval;
214 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
215 1, data);
216 if (retval != ERROR_OK)
217 return retval;
218
219 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
220 for (unsigned int i = 0; i < bank->bus_width / bank->chip_width; i++)
221 data[0] |= data[i];
222
223 *val = data[0];
224 } else {
225 uint8_t value = 0;
226 for (unsigned int i = 0; i < bank->bus_width / bank->chip_width; i++)
227 value |= data[bank->bus_width - 1 - i];
228
229 *val = value;
230 }
231 return ERROR_OK;
232 }
233
234 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
235 {
236 struct cfi_flash_bank *cfi_info = bank->driver_priv;
237 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
238 int retval;
239
240 if (cfi_info->x16_as_x8) {
241 for (uint8_t i = 0; i < 2; i++) {
242 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
243 1, &data[i * bank->bus_width]);
244 if (retval != ERROR_OK)
245 return retval;
246 }
247 } else {
248 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
249 2, data);
250 if (retval != ERROR_OK)
251 return retval;
252 }
253
254 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
255 *val = data[0] | data[bank->bus_width] << 8;
256 else
257 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
258
259 return ERROR_OK;
260 }
261
262 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
263 {
264 struct cfi_flash_bank *cfi_info = bank->driver_priv;
265 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
266 int retval;
267
268 if (cfi_info->x16_as_x8) {
269 for (uint8_t i = 0; i < 4; i++) {
270 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
271 1, &data[i * bank->bus_width]);
272 if (retval != ERROR_OK)
273 return retval;
274 }
275 } else {
276 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
277 4, data);
278 if (retval != ERROR_OK)
279 return retval;
280 }
281
282 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
283 *val = data[0] | data[bank->bus_width] << 8 |
284 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
285 else
286 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
287 data[(3 * bank->bus_width) - 1] << 16 |
288 data[(4 * bank->bus_width) - 1] << 24;
289
290 return ERROR_OK;
291 }
292
293 int cfi_reset(struct flash_bank *bank)
294 {
295 struct cfi_flash_bank *cfi_info = bank->driver_priv;
296 int retval = ERROR_OK;
297
298 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
299 if (retval != ERROR_OK)
300 return retval;
301
302 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
303 if (retval != ERROR_OK)
304 return retval;
305
306 if (cfi_info->manufacturer == 0x20 &&
307 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
308 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
309 * so we send an extra 0xF0 reset to fix the bug */
310 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x00));
311 if (retval != ERROR_OK)
312 return retval;
313 }
314
315 return retval;
316 }
317
318 static void cfi_intel_clear_status_register(struct flash_bank *bank)
319 {
320 cfi_send_command(bank, 0x50, cfi_flash_address(bank, 0, 0x0));
321 }
322
323 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
324 {
325 uint8_t status;
326
327 int retval = ERROR_OK;
328
329 for (;; ) {
330 if (timeout-- < 0) {
331 LOG_ERROR("timeout while waiting for WSM to become ready");
332 return ERROR_FAIL;
333 }
334
335 retval = cfi_get_u8(bank, 0, 0x0, &status);
336 if (retval != ERROR_OK)
337 return retval;
338
339 if (status & 0x80)
340 break;
341
342 alive_sleep(1);
343 }
344
345 /* mask out bit 0 (reserved) */
346 status = status & 0xfe;
347
348 LOG_DEBUG("status: 0x%x", status);
349
350 if (status != 0x80) {
351 LOG_ERROR("status register: 0x%x", status);
352 if (status & 0x2)
353 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
354 if (status & 0x4)
355 LOG_ERROR("Program suspended");
356 if (status & 0x8)
357 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
358 if (status & 0x10)
359 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
360 if (status & 0x20)
361 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
362 if (status & 0x40)
363 LOG_ERROR("Block Erase Suspended");
364
365 cfi_intel_clear_status_register(bank);
366
367 retval = ERROR_FAIL;
368 }
369
370 *val = status;
371 return retval;
372 }
373
374 int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
375 {
376 uint8_t status, oldstatus;
377 struct cfi_flash_bank *cfi_info = bank->driver_priv;
378 int retval;
379
380 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
381 if (retval != ERROR_OK)
382 return retval;
383
384 do {
385 retval = cfi_get_u8(bank, 0, 0x0, &status);
386
387 if (retval != ERROR_OK)
388 return retval;
389
390 if ((status ^ oldstatus) & 0x40) {
391 if (status & cfi_info->status_poll_mask & 0x20) {
392 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
393 if (retval != ERROR_OK)
394 return retval;
395 retval = cfi_get_u8(bank, 0, 0x0, &status);
396 if (retval != ERROR_OK)
397 return retval;
398 if ((status ^ oldstatus) & 0x40) {
399 LOG_ERROR("dq5 timeout, status: 0x%x", status);
400 return ERROR_FLASH_OPERATION_FAILED;
401 } else {
402 LOG_DEBUG("status: 0x%x", status);
403 return ERROR_OK;
404 }
405 }
406 } else {/* no toggle: finished, OK */
407 LOG_DEBUG("status: 0x%x", status);
408 return ERROR_OK;
409 }
410
411 oldstatus = status;
412 alive_sleep(1);
413 } while (timeout-- > 0);
414
415 LOG_ERROR("timeout, status: 0x%x", status);
416
417 return ERROR_FLASH_BUSY;
418 }
419
420 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
421 {
422 int retval;
423 struct cfi_flash_bank *cfi_info = bank->driver_priv;
424 struct cfi_intel_pri_ext *pri_ext;
425
426 free(cfi_info->pri_ext);
427
428 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
429 if (pri_ext == NULL) {
430 LOG_ERROR("Out of memory");
431 return ERROR_FAIL;
432 }
433 cfi_info->pri_ext = pri_ext;
434
435 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
436 if (retval != ERROR_OK)
437 return retval;
438 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
439 if (retval != ERROR_OK)
440 return retval;
441 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
442 if (retval != ERROR_OK)
443 return retval;
444
445 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
446 retval = cfi_reset(bank);
447 if (retval != ERROR_OK)
448 return retval;
449 LOG_ERROR("Could not read bank flash bank information");
450 return ERROR_FLASH_BANK_INVALID;
451 }
452
453 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
454 if (retval != ERROR_OK)
455 return retval;
456 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
457 if (retval != ERROR_OK)
458 return retval;
459
460 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
461 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
462
463 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
464 if (retval != ERROR_OK)
465 return retval;
466 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
467 if (retval != ERROR_OK)
468 return retval;
469 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
470 if (retval != ERROR_OK)
471 return retval;
472
473 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
474 "0x%x, blk_status_reg_mask: 0x%x",
475 pri_ext->feature_support,
476 pri_ext->suspend_cmd_support,
477 pri_ext->blk_status_reg_mask);
478
479 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
480 if (retval != ERROR_OK)
481 return retval;
482 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
483 if (retval != ERROR_OK)
484 return retval;
485
486 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
487 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
488 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
489
490 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
491 if (retval != ERROR_OK)
492 return retval;
493 if (pri_ext->num_protection_fields != 1) {
494 LOG_WARNING("expected one protection register field, but found %i",
495 pri_ext->num_protection_fields);
496 }
497
498 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
499 if (retval != ERROR_OK)
500 return retval;
501 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
502 if (retval != ERROR_OK)
503 return retval;
504 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
505 if (retval != ERROR_OK)
506 return retval;
507
508 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
509 "factory pre-programmed: %i, user programmable: %i",
510 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
511 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
512
513 return ERROR_OK;
514 }
515
516 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
517 {
518 int retval;
519 struct cfi_flash_bank *cfi_info = bank->driver_priv;
520 struct cfi_spansion_pri_ext *pri_ext;
521
522 free(cfi_info->pri_ext);
523
524 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
525 if (pri_ext == NULL) {
526 LOG_ERROR("Out of memory");
527 return ERROR_FAIL;
528 }
529 cfi_info->pri_ext = pri_ext;
530
531 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
532 if (retval != ERROR_OK)
533 return retval;
534 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
535 if (retval != ERROR_OK)
536 return retval;
537 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
538 if (retval != ERROR_OK)
539 return retval;
540
541 /* default values for implementation specific workarounds */
542 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
543 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
544 pri_ext->_reversed_geometry = 0;
545
546 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
547 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
548 if (retval != ERROR_OK)
549 return retval;
550 LOG_ERROR("Could not read spansion bank information");
551 return ERROR_FLASH_BANK_INVALID;
552 }
553
554 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
555 if (retval != ERROR_OK)
556 return retval;
557 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
558 if (retval != ERROR_OK)
559 return retval;
560
561 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
562 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
563
564 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
565 if (retval != ERROR_OK)
566 return retval;
567 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
568 if (retval != ERROR_OK)
569 return retval;
570 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
571 if (retval != ERROR_OK)
572 return retval;
573 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
574 if (retval != ERROR_OK)
575 return retval;
576 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
577 if (retval != ERROR_OK)
578 return retval;
579 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
580 if (retval != ERROR_OK)
581 return retval;
582 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
583 if (retval != ERROR_OK)
584 return retval;
585 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
586 if (retval != ERROR_OK)
587 return retval;
588 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
589 if (retval != ERROR_OK)
590 return retval;
591 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
592 if (retval != ERROR_OK)
593 return retval;
594 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
595 if (retval != ERROR_OK)
596 return retval;
597
598 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
599 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
600
601 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
602 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
603 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
604
605 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
606
607
608 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
609 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
610 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
611
612 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
613
614 return ERROR_OK;
615 }
616
617 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
618 {
619 int retval;
620 struct cfi_atmel_pri_ext atmel_pri_ext;
621 struct cfi_flash_bank *cfi_info = bank->driver_priv;
622 struct cfi_spansion_pri_ext *pri_ext;
623
624 free(cfi_info->pri_ext);
625
626 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
627 if (pri_ext == NULL) {
628 LOG_ERROR("Out of memory");
629 return ERROR_FAIL;
630 }
631
632 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
633 * but a different primary extended query table.
634 * We read the atmel table, and prepare a valid AMD/Spansion query table.
635 */
636
637 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
638
639 cfi_info->pri_ext = pri_ext;
640
641 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
642 if (retval != ERROR_OK)
643 return retval;
644 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
645 if (retval != ERROR_OK)
646 return retval;
647 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
648 if (retval != ERROR_OK)
649 return retval;
650
651 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
652 || (atmel_pri_ext.pri[2] != 'I')) {
653 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
654 if (retval != ERROR_OK)
655 return retval;
656 LOG_ERROR("Could not read atmel bank information");
657 return ERROR_FLASH_BANK_INVALID;
658 }
659
660 pri_ext->pri[0] = atmel_pri_ext.pri[0];
661 pri_ext->pri[1] = atmel_pri_ext.pri[1];
662 pri_ext->pri[2] = atmel_pri_ext.pri[2];
663
664 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
665 if (retval != ERROR_OK)
666 return retval;
667 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
668 if (retval != ERROR_OK)
669 return retval;
670
671 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
672 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
673 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
674
675 pri_ext->major_version = atmel_pri_ext.major_version;
676 pri_ext->minor_version = atmel_pri_ext.minor_version;
677
678 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
679 if (retval != ERROR_OK)
680 return retval;
681 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
682 if (retval != ERROR_OK)
683 return retval;
684 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
685 if (retval != ERROR_OK)
686 return retval;
687 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
688 if (retval != ERROR_OK)
689 return retval;
690
691 LOG_DEBUG(
692 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
693 atmel_pri_ext.features,
694 atmel_pri_ext.bottom_boot,
695 atmel_pri_ext.burst_mode,
696 atmel_pri_ext.page_mode);
697
698 if (atmel_pri_ext.features & 0x02)
699 pri_ext->EraseSuspend = 2;
700
701 /* some chips got it backwards... */
702 if (cfi_info->device_id == AT49BV6416 ||
703 cfi_info->device_id == AT49BV6416T) {
704 if (atmel_pri_ext.bottom_boot)
705 pri_ext->TopBottom = 3;
706 else
707 pri_ext->TopBottom = 2;
708 } else {
709 if (atmel_pri_ext.bottom_boot)
710 pri_ext->TopBottom = 2;
711 else
712 pri_ext->TopBottom = 3;
713 }
714
715 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
716 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
717
718 return ERROR_OK;
719 }
720
721 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
722 {
723 struct cfi_flash_bank *cfi_info = bank->driver_priv;
724
725 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
726 return cfi_read_atmel_pri_ext(bank);
727 else
728 return cfi_read_spansion_pri_ext(bank);
729 }
730
731 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
732 {
733 int printed;
734 struct cfi_flash_bank *cfi_info = bank->driver_priv;
735 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
736
737 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
738 buf += printed;
739 buf_size -= printed;
740
741 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
742 pri_ext->pri[1], pri_ext->pri[2],
743 pri_ext->major_version, pri_ext->minor_version);
744 buf += printed;
745 buf_size -= printed;
746
747 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
748 (pri_ext->SiliconRevision) >> 2,
749 (pri_ext->SiliconRevision) & 0x03);
750 buf += printed;
751 buf_size -= printed;
752
753 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
754 pri_ext->EraseSuspend,
755 pri_ext->BlkProt);
756 buf += printed;
757 buf_size -= printed;
758
759 snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
760 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
761 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
762
763 return ERROR_OK;
764 }
765
766 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
767 {
768 int printed;
769 struct cfi_flash_bank *cfi_info = bank->driver_priv;
770 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
771
772 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
773 buf += printed;
774 buf_size -= printed;
775
776 printed = snprintf(buf,
777 buf_size,
778 "pri: '%c%c%c', version: %c.%c\n",
779 pri_ext->pri[0],
780 pri_ext->pri[1],
781 pri_ext->pri[2],
782 pri_ext->major_version,
783 pri_ext->minor_version);
784 buf += printed;
785 buf_size -= printed;
786
787 printed = snprintf(buf,
788 buf_size,
789 "feature_support: 0x%" PRIx32 ", "
790 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
791 pri_ext->feature_support,
792 pri_ext->suspend_cmd_support,
793 pri_ext->blk_status_reg_mask);
794 buf += printed;
795 buf_size -= printed;
796
797 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
798 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
799 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
800 buf += printed;
801 buf_size -= printed;
802
803 snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
804 "factory pre-programmed: %i, user programmable: %i\n",
805 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
806 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
807
808 return ERROR_OK;
809 }
810
811 int cfi_flash_bank_cmd(struct flash_bank *bank, unsigned int argc, const char **argv)
812 {
813 struct cfi_flash_bank *cfi_info;
814 bool bus_swap = false;
815
816 if (argc < 6)
817 return ERROR_COMMAND_SYNTAX_ERROR;
818
819 /* both widths must:
820 * - not exceed max value;
821 * - not be null;
822 * - be equal to a power of 2.
823 * bus must be wide enough to hold one chip */
824 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
825 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
826 || (bank->chip_width == 0)
827 || (bank->bus_width == 0)
828 || (bank->chip_width & (bank->chip_width - 1))
829 || (bank->bus_width & (bank->bus_width - 1))
830 || (bank->chip_width > bank->bus_width)) {
831 LOG_ERROR("chip and bus width have to specified in bytes");
832 return ERROR_FLASH_BANK_INVALID;
833 }
834
835 cfi_info = malloc(sizeof(struct cfi_flash_bank));
836 cfi_info->probed = false;
837 cfi_info->erase_region_info = NULL;
838 cfi_info->pri_ext = NULL;
839 bank->driver_priv = cfi_info;
840
841 cfi_info->x16_as_x8 = false;
842 cfi_info->jedec_probe = false;
843 cfi_info->not_cfi = false;
844 cfi_info->data_swap = false;
845
846 for (unsigned i = 6; i < argc; i++) {
847 if (strcmp(argv[i], "x16_as_x8") == 0)
848 cfi_info->x16_as_x8 = true;
849 else if (strcmp(argv[i], "data_swap") == 0)
850 cfi_info->data_swap = true;
851 else if (strcmp(argv[i], "bus_swap") == 0)
852 bus_swap = true;
853 else if (strcmp(argv[i], "jedec_probe") == 0)
854 cfi_info->jedec_probe = true;
855 }
856
857 if (bus_swap)
858 cfi_info->endianness =
859 bank->target->endianness == TARGET_LITTLE_ENDIAN ?
860 TARGET_BIG_ENDIAN : TARGET_LITTLE_ENDIAN;
861 else
862 cfi_info->endianness = bank->target->endianness;
863
864 /* bank wasn't probed yet */
865 cfi_info->qry[0] = 0xff;
866
867 return ERROR_OK;
868 }
869
870 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
871 */
872 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
873 {
874 return cfi_flash_bank_cmd(bank, CMD_ARGC, CMD_ARGV);
875 }
876
877 static int cfi_intel_erase(struct flash_bank *bank, unsigned int first,
878 unsigned int last)
879 {
880 int retval;
881 struct cfi_flash_bank *cfi_info = bank->driver_priv;
882
883 cfi_intel_clear_status_register(bank);
884
885 for (unsigned int i = first; i <= last; i++) {
886 retval = cfi_send_command(bank, 0x20, cfi_flash_address(bank, i, 0x0));
887 if (retval != ERROR_OK)
888 return retval;
889
890 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
891 if (retval != ERROR_OK)
892 return retval;
893
894 uint8_t status;
895 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
896 if (retval != ERROR_OK)
897 return retval;
898
899 if (status == 0x80)
900 bank->sectors[i].is_erased = 1;
901 else {
902 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
903 if (retval != ERROR_OK)
904 return retval;
905
906 LOG_ERROR("couldn't erase block %u of flash bank at base "
907 TARGET_ADDR_FMT, i, bank->base);
908 return ERROR_FLASH_OPERATION_FAILED;
909 }
910 }
911
912 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
913 }
914
915 int cfi_spansion_unlock_seq(struct flash_bank *bank)
916 {
917 int retval;
918 struct cfi_flash_bank *cfi_info = bank->driver_priv;
919 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
920
921 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, pri_ext->_unlock1));
922 if (retval != ERROR_OK)
923 return retval;
924
925 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, pri_ext->_unlock2));
926 if (retval != ERROR_OK)
927 return retval;
928
929 return ERROR_OK;
930 }
931
932 static int cfi_spansion_erase(struct flash_bank *bank, unsigned int first,
933 unsigned int last)
934 {
935 int retval;
936 struct cfi_flash_bank *cfi_info = bank->driver_priv;
937 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
938
939 for (unsigned int i = first; i <= last; i++) {
940 retval = cfi_spansion_unlock_seq(bank);
941 if (retval != ERROR_OK)
942 return retval;
943
944 retval = cfi_send_command(bank, 0x80, cfi_flash_address(bank, 0, pri_ext->_unlock1));
945 if (retval != ERROR_OK)
946 return retval;
947
948 retval = cfi_spansion_unlock_seq(bank);
949 if (retval != ERROR_OK)
950 return retval;
951
952 retval = cfi_send_command(bank, 0x30, cfi_flash_address(bank, i, 0x0));
953 if (retval != ERROR_OK)
954 return retval;
955
956 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
957 bank->sectors[i].is_erased = 1;
958 else {
959 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
960 if (retval != ERROR_OK)
961 return retval;
962
963 LOG_ERROR("couldn't erase block %i of flash bank at base "
964 TARGET_ADDR_FMT, i, bank->base);
965 return ERROR_FLASH_OPERATION_FAILED;
966 }
967 }
968
969 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
970 }
971
972 int cfi_erase(struct flash_bank *bank, unsigned int first,
973 unsigned int last)
974 {
975 struct cfi_flash_bank *cfi_info = bank->driver_priv;
976
977 if (bank->target->state != TARGET_HALTED) {
978 LOG_ERROR("Target not halted");
979 return ERROR_TARGET_NOT_HALTED;
980 }
981
982 if ((last < first) || (last >= bank->num_sectors))
983 return ERROR_FLASH_SECTOR_INVALID;
984
985 if (cfi_info->qry[0] != 'Q')
986 return ERROR_FLASH_BANK_NOT_PROBED;
987
988 switch (cfi_info->pri_id) {
989 case 1:
990 case 3:
991 return cfi_intel_erase(bank, first, last);
992 case 2:
993 return cfi_spansion_erase(bank, first, last);
994 default:
995 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
996 break;
997 }
998
999 return ERROR_OK;
1000 }
1001
1002 static int cfi_intel_protect(struct flash_bank *bank, int set,
1003 unsigned int first, unsigned int last)
1004 {
1005 int retval;
1006 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1007 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
1008 int retry = 0;
1009
1010 /* if the device supports neither legacy lock/unlock (bit 3) nor
1011 * instant individual block locking (bit 5).
1012 */
1013 if (!(pri_ext->feature_support & 0x28)) {
1014 LOG_ERROR("lock/unlock not supported on flash");
1015 return ERROR_FLASH_OPERATION_FAILED;
1016 }
1017
1018 cfi_intel_clear_status_register(bank);
1019
1020 for (unsigned int i = first; i <= last; i++) {
1021 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
1022 if (retval != ERROR_OK)
1023 return retval;
1024 if (set) {
1025 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
1026 if (retval != ERROR_OK)
1027 return retval;
1028 bank->sectors[i].is_protected = 1;
1029 } else {
1030 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
1031 if (retval != ERROR_OK)
1032 return retval;
1033 bank->sectors[i].is_protected = 0;
1034 }
1035
1036 /* instant individual block locking doesn't require reading of the status register
1037 **/
1038 if (!(pri_ext->feature_support & 0x20)) {
1039 /* Clear lock bits operation may take up to 1.4s */
1040 uint8_t status;
1041 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1042 if (retval != ERROR_OK)
1043 return retval;
1044 } else {
1045 uint8_t block_status;
1046 /* read block lock bit, to verify status */
1047 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
1048 if (retval != ERROR_OK)
1049 return retval;
1050 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1051 if (retval != ERROR_OK)
1052 return retval;
1053
1054 if ((block_status & 0x1) != set) {
1055 LOG_ERROR(
1056 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1057 set, block_status);
1058 retval = cfi_send_command(bank, 0x70, cfi_flash_address(bank, 0, 0x55));
1059 if (retval != ERROR_OK)
1060 return retval;
1061 uint8_t status;
1062 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1063 if (retval != ERROR_OK)
1064 return retval;
1065
1066 if (retry > 10)
1067 return ERROR_FLASH_OPERATION_FAILED;
1068 else {
1069 i--;
1070 retry++;
1071 }
1072 }
1073 }
1074 }
1075
1076 /* if the device doesn't support individual block lock bits set/clear,
1077 * all blocks have been unlocked in parallel, so we set those that should be protected
1078 */
1079 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1080 /* FIX!!! this code path is broken!!!
1081 *
1082 * The correct approach is:
1083 *
1084 * 1. read out current protection status
1085 *
1086 * 2. override read out protection status w/unprotected.
1087 *
1088 * 3. re-protect what should be protected.
1089 *
1090 */
1091 for (unsigned int i = 0; i < bank->num_sectors; i++) {
1092 if (bank->sectors[i].is_protected == 1) {
1093 cfi_intel_clear_status_register(bank);
1094
1095 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
1096 if (retval != ERROR_OK)
1097 return retval;
1098
1099 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
1100 if (retval != ERROR_OK)
1101 return retval;
1102
1103 uint8_t status;
1104 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1105 if (retval != ERROR_OK)
1106 return retval;
1107 }
1108 }
1109 }
1110
1111 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
1112 }
1113
1114 int cfi_protect(struct flash_bank *bank, int set, unsigned int first,
1115 unsigned int last)
1116 {
1117 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1118
1119 if (bank->target->state != TARGET_HALTED) {
1120 LOG_ERROR("Target not halted");
1121 return ERROR_TARGET_NOT_HALTED;
1122 }
1123
1124 if (cfi_info->qry[0] != 'Q')
1125 return ERROR_FLASH_BANK_NOT_PROBED;
1126
1127 switch (cfi_info->pri_id) {
1128 case 1:
1129 case 3:
1130 return cfi_intel_protect(bank, set, first, last);
1131 default:
1132 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1133 return ERROR_OK;
1134 }
1135 }
1136
1137 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1138 {
1139 struct target *target = bank->target;
1140
1141 uint8_t buf[CFI_MAX_BUS_WIDTH];
1142 cfi_command(bank, cmd, buf);
1143 switch (bank->bus_width) {
1144 case 1:
1145 return buf[0];
1146 case 2:
1147 return target_buffer_get_u16(target, buf);
1148 case 4:
1149 return target_buffer_get_u32(target, buf);
1150 default:
1151 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1152 bank->bus_width);
1153 return 0;
1154 }
1155 }
1156
1157 static int cfi_intel_write_block(struct flash_bank *bank, const uint8_t *buffer,
1158 uint32_t address, uint32_t count)
1159 {
1160 struct target *target = bank->target;
1161 struct reg_param reg_params[7];
1162 struct arm_algorithm arm_algo;
1163 struct working_area *write_algorithm;
1164 struct working_area *source = NULL;
1165 uint32_t buffer_size = 32768;
1166 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1167
1168 /* algorithm register usage:
1169 * r0: source address (in RAM)
1170 * r1: target address (in Flash)
1171 * r2: count
1172 * r3: flash write command
1173 * r4: status byte (returned to host)
1174 * r5: busy test pattern
1175 * r6: error test pattern
1176 */
1177
1178 /* see contrib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1179 static const uint32_t word_32_code[] = {
1180 0xe4904004, /* loop: ldr r4, [r0], #4 */
1181 0xe5813000, /* str r3, [r1] */
1182 0xe5814000, /* str r4, [r1] */
1183 0xe5914000, /* busy: ldr r4, [r1] */
1184 0xe0047005, /* and r7, r4, r5 */
1185 0xe1570005, /* cmp r7, r5 */
1186 0x1afffffb, /* bne busy */
1187 0xe1140006, /* tst r4, r6 */
1188 0x1a000003, /* bne done */
1189 0xe2522001, /* subs r2, r2, #1 */
1190 0x0a000001, /* beq done */
1191 0xe2811004, /* add r1, r1 #4 */
1192 0xeafffff2, /* b loop */
1193 0xeafffffe /* done: b -2 */
1194 };
1195
1196 /* see contrib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1197 static const uint32_t word_16_code[] = {
1198 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1199 0xe1c130b0, /* strh r3, [r1] */
1200 0xe1c140b0, /* strh r4, [r1] */
1201 0xe1d140b0, /* busy ldrh r4, [r1] */
1202 0xe0047005, /* and r7, r4, r5 */
1203 0xe1570005, /* cmp r7, r5 */
1204 0x1afffffb, /* bne busy */
1205 0xe1140006, /* tst r4, r6 */
1206 0x1a000003, /* bne done */
1207 0xe2522001, /* subs r2, r2, #1 */
1208 0x0a000001, /* beq done */
1209 0xe2811002, /* add r1, r1 #2 */
1210 0xeafffff2, /* b loop */
1211 0xeafffffe /* done: b -2 */
1212 };
1213
1214 /* see contrib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1215 static const uint32_t word_8_code[] = {
1216 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1217 0xe5c13000, /* strb r3, [r1] */
1218 0xe5c14000, /* strb r4, [r1] */
1219 0xe5d14000, /* busy ldrb r4, [r1] */
1220 0xe0047005, /* and r7, r4, r5 */
1221 0xe1570005, /* cmp r7, r5 */
1222 0x1afffffb, /* bne busy */
1223 0xe1140006, /* tst r4, r6 */
1224 0x1a000003, /* bne done */
1225 0xe2522001, /* subs r2, r2, #1 */
1226 0x0a000001, /* beq done */
1227 0xe2811001, /* add r1, r1 #1 */
1228 0xeafffff2, /* b loop */
1229 0xeafffffe /* done: b -2 */
1230 };
1231 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1232 const uint32_t *target_code_src;
1233 uint32_t target_code_size;
1234 int retval = ERROR_OK;
1235
1236 /* check we have a supported arch */
1237 if (is_arm(target_to_arm(target))) {
1238 /* All other ARM CPUs have 32 bit instructions */
1239 arm_algo.common_magic = ARM_COMMON_MAGIC;
1240 arm_algo.core_mode = ARM_MODE_SVC;
1241 arm_algo.core_state = ARM_STATE_ARM;
1242 } else {
1243 LOG_ERROR("Unknown architecture");
1244 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1245 }
1246
1247 cfi_intel_clear_status_register(bank);
1248
1249 /* If we are setting up the write_algorithm, we need target_code_src
1250 * if not we only need target_code_size. */
1251
1252 /* However, we don't want to create multiple code paths, so we
1253 * do the unnecessary evaluation of target_code_src, which the
1254 * compiler will probably nicely optimize away if not needed */
1255
1256 /* prepare algorithm code for target endian */
1257 switch (bank->bus_width) {
1258 case 1:
1259 target_code_src = word_8_code;
1260 target_code_size = sizeof(word_8_code);
1261 break;
1262 case 2:
1263 target_code_src = word_16_code;
1264 target_code_size = sizeof(word_16_code);
1265 break;
1266 case 4:
1267 target_code_src = word_32_code;
1268 target_code_size = sizeof(word_32_code);
1269 break;
1270 default:
1271 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1272 bank->bus_width);
1273 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1274 }
1275
1276 /* flash write code */
1277 if (target_code_size > sizeof(target_code)) {
1278 LOG_WARNING("Internal error - target code buffer to small. "
1279 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1280 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1281 }
1282
1283 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1284
1285 /* Get memory for block write handler */
1286 retval = target_alloc_working_area(target,
1287 target_code_size,
1288 &write_algorithm);
1289 if (retval != ERROR_OK) {
1290 LOG_WARNING("No working area available, can't do block memory writes");
1291 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1292 }
1293
1294 /* write algorithm code to working area */
1295 retval = target_write_buffer(target, write_algorithm->address,
1296 target_code_size, target_code);
1297 if (retval != ERROR_OK) {
1298 LOG_ERROR("Unable to write block write code to target");
1299 goto cleanup;
1300 }
1301
1302 /* Get a workspace buffer for the data to flash starting with 32k size.
1303 * Half size until buffer would be smaller 256 Bytes then fail back */
1304 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1305 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1306 buffer_size /= 2;
1307 if (buffer_size <= 256) {
1308 LOG_WARNING(
1309 "no large enough working area available, can't do block memory writes");
1310 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1311 goto cleanup;
1312 }
1313 }
1314
1315 /* setup algo registers */
1316 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1317 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1318 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1319 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1320 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1321 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1322 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1323
1324 /* prepare command and status register patterns */
1325 write_command_val = cfi_command_val(bank, 0x40);
1326 busy_pattern_val = cfi_command_val(bank, 0x80);
1327 error_pattern_val = cfi_command_val(bank, 0x7e);
1328
1329 LOG_DEBUG("Using target buffer at " TARGET_ADDR_FMT " and of size 0x%04" PRIx32,
1330 source->address, buffer_size);
1331
1332 /* Programming main loop */
1333 while (count > 0) {
1334 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1335 uint32_t wsm_error;
1336
1337 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1338 if (retval != ERROR_OK)
1339 goto cleanup;
1340
1341 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1342 buf_set_u32(reg_params[1].value, 0, 32, address);
1343 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1344
1345 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1346 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1347 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1348
1349 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1350 thisrun_count, address);
1351
1352 /* Execute algorithm, assume breakpoint for last instruction */
1353 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1354 write_algorithm->address,
1355 write_algorithm->address + target_code_size -
1356 sizeof(uint32_t),
1357 10000, /* 10s should be enough for max. 32k of data */
1358 &arm_algo);
1359
1360 /* On failure try a fall back to direct word writes */
1361 if (retval != ERROR_OK) {
1362 cfi_intel_clear_status_register(bank);
1363 LOG_ERROR(
1364 "Execution of flash algorithm failed. Can't fall back. Please report.");
1365 retval = ERROR_FLASH_OPERATION_FAILED;
1366 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1367 /* FIXME To allow fall back or recovery, we must save the actual status
1368 * somewhere, so that a higher level code can start recovery. */
1369 goto cleanup;
1370 }
1371
1372 /* Check return value from algo code */
1373 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1374 if (wsm_error) {
1375 /* read status register (outputs debug information) */
1376 uint8_t status;
1377 cfi_intel_wait_status_busy(bank, 100, &status);
1378 cfi_intel_clear_status_register(bank);
1379 retval = ERROR_FLASH_OPERATION_FAILED;
1380 goto cleanup;
1381 }
1382
1383 buffer += thisrun_count;
1384 address += thisrun_count;
1385 count -= thisrun_count;
1386
1387 keep_alive();
1388 }
1389
1390 /* free up resources */
1391 cleanup:
1392 if (source)
1393 target_free_working_area(target, source);
1394
1395 target_free_working_area(target, write_algorithm);
1396
1397 destroy_reg_param(&reg_params[0]);
1398 destroy_reg_param(&reg_params[1]);
1399 destroy_reg_param(&reg_params[2]);
1400 destroy_reg_param(&reg_params[3]);
1401 destroy_reg_param(&reg_params[4]);
1402 destroy_reg_param(&reg_params[5]);
1403 destroy_reg_param(&reg_params[6]);
1404
1405 return retval;
1406 }
1407
1408 static int cfi_spansion_write_block_mips(struct flash_bank *bank, const uint8_t *buffer,
1409 uint32_t address, uint32_t count)
1410 {
1411 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1412 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1413 struct target *target = bank->target;
1414 struct reg_param reg_params[10];
1415 struct mips32_algorithm mips32_info;
1416 struct working_area *write_algorithm;
1417 struct working_area *source;
1418 uint32_t buffer_size = 32768;
1419 uint32_t status;
1420 int retval = ERROR_OK;
1421
1422 /* input parameters -
1423 * 4 A0 = source address
1424 * 5 A1 = destination address
1425 * 6 A2 = number of writes
1426 * 7 A3 = flash write command
1427 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1428 * output parameters -
1429 * 9 T1 = 0x80 ok 0x00 bad
1430 * temp registers -
1431 * 10 T2 = value read from flash to test status
1432 * 11 T3 = holding register
1433 * unlock registers -
1434 * 12 T4 = unlock1_addr
1435 * 13 T5 = unlock1_cmd
1436 * 14 T6 = unlock2_addr
1437 * 15 T7 = unlock2_cmd */
1438
1439 static const uint32_t mips_word_16_code[] = {
1440 /* start: */
1441 MIPS32_LHU(0, 9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1442 MIPS32_ADDI(0, 4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1443 MIPS32_SH(0, 13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
1444 MIPS32_SH(0, 15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
1445 MIPS32_SH(0, 7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
1446 MIPS32_SH(0, 9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1447 MIPS32_NOP, /* nop */
1448 /* busy: */
1449 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1450 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1451 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1452 MIPS32_BNE(0, 11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1453 MIPS32_NOP, /* nop */
1454
1455 MIPS32_SRL(0, 10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
1456 MIPS32_AND(0, 11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
1457 MIPS32_BNE(0, 11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
1458 MIPS32_NOP, /* nop */
1459
1460 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1461 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1462 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1463 MIPS32_BNE(0, 11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1464 MIPS32_NOP, /* nop */
1465
1466 MIPS32_XOR(0, 9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1467 MIPS32_BEQ(0, 9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
1468 MIPS32_NOP, /* nop */
1469 /* cont: */
1470 MIPS32_ADDI(0, 6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1471 MIPS32_BNE(0, 6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
1472 MIPS32_NOP, /* nop */
1473
1474 MIPS32_LUI(0, 9, 0), /* lui $t1, 0 */
1475 MIPS32_ORI(0, 9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1476
1477 MIPS32_B(0, 4), /* b done ; goto done */
1478 MIPS32_NOP, /* nop */
1479 /* cont2: */
1480 MIPS32_ADDI(0, 5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1481 MIPS32_B(0, NEG16(33)), /* b start ; goto start */
1482 MIPS32_NOP, /* nop */
1483 /* done: */
1484 MIPS32_SDBBP(0), /* sdbbp ; break(); */
1485 };
1486
1487 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1488 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1489
1490 int target_code_size = 0;
1491 const uint32_t *target_code_src = NULL;
1492
1493 switch (bank->bus_width) {
1494 case 2:
1495 /* Check for DQ5 support */
1496 if (cfi_info->status_poll_mask & (1 << 5)) {
1497 target_code_src = mips_word_16_code;
1498 target_code_size = sizeof(mips_word_16_code);
1499 } else {
1500 LOG_ERROR("Need DQ5 support");
1501 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1502 /* target_code_src = mips_word_16_code_dq7only; */
1503 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1504 }
1505 break;
1506 default:
1507 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1508 bank->bus_width);
1509 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1510 }
1511
1512 /* flash write code */
1513 uint8_t *target_code;
1514
1515 /* convert bus-width dependent algorithm code to correct endianness */
1516 target_code = malloc(target_code_size);
1517 if (target_code == NULL) {
1518 LOG_ERROR("Out of memory");
1519 return ERROR_FAIL;
1520 }
1521
1522 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1523
1524 /* allocate working area */
1525 retval = target_alloc_working_area(target, target_code_size,
1526 &write_algorithm);
1527 if (retval != ERROR_OK) {
1528 free(target_code);
1529 return retval;
1530 }
1531
1532 /* write algorithm code to working area */
1533 retval = target_write_buffer(target, write_algorithm->address,
1534 target_code_size, target_code);
1535 if (retval != ERROR_OK) {
1536 free(target_code);
1537 return retval;
1538 }
1539
1540 free(target_code);
1541
1542 /* the following code still assumes target code is fixed 24*4 bytes */
1543
1544 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1545 buffer_size /= 2;
1546 if (buffer_size <= 256) {
1547 /* we already allocated the writing code, but failed to get a
1548 * buffer, free the algorithm */
1549 target_free_working_area(target, write_algorithm);
1550
1551 LOG_WARNING(
1552 "not enough working area available, can't do block memory writes");
1553 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1554 }
1555 }
1556
1557 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
1558 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
1559 init_reg_param(&reg_params[2], "r6", 32, PARAM_OUT);
1560 init_reg_param(&reg_params[3], "r7", 32, PARAM_OUT);
1561 init_reg_param(&reg_params[4], "r8", 32, PARAM_OUT);
1562 init_reg_param(&reg_params[5], "r9", 32, PARAM_IN);
1563 init_reg_param(&reg_params[6], "r12", 32, PARAM_OUT);
1564 init_reg_param(&reg_params[7], "r13", 32, PARAM_OUT);
1565 init_reg_param(&reg_params[8], "r14", 32, PARAM_OUT);
1566 init_reg_param(&reg_params[9], "r15", 32, PARAM_OUT);
1567
1568 while (count > 0) {
1569 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1570
1571 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1572 if (retval != ERROR_OK)
1573 break;
1574
1575 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1576 buf_set_u32(reg_params[1].value, 0, 32, address);
1577 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1578 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1579 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1580 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1581 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1582 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1583 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1584
1585 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1586 write_algorithm->address,
1587 write_algorithm->address + ((target_code_size) - 4),
1588 10000, &mips32_info);
1589 if (retval != ERROR_OK)
1590 break;
1591
1592 status = buf_get_u32(reg_params[5].value, 0, 32);
1593 if (status != 0x80) {
1594 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1595 retval = ERROR_FLASH_OPERATION_FAILED;
1596 break;
1597 }
1598
1599 buffer += thisrun_count;
1600 address += thisrun_count;
1601 count -= thisrun_count;
1602 }
1603
1604 target_free_all_working_areas(target);
1605
1606 destroy_reg_param(&reg_params[0]);
1607 destroy_reg_param(&reg_params[1]);
1608 destroy_reg_param(&reg_params[2]);
1609 destroy_reg_param(&reg_params[3]);
1610 destroy_reg_param(&reg_params[4]);
1611 destroy_reg_param(&reg_params[5]);
1612 destroy_reg_param(&reg_params[6]);
1613 destroy_reg_param(&reg_params[7]);
1614 destroy_reg_param(&reg_params[8]);
1615 destroy_reg_param(&reg_params[9]);
1616
1617 return retval;
1618 }
1619
1620 static int cfi_spansion_write_block(struct flash_bank *bank, const uint8_t *buffer,
1621 uint32_t address, uint32_t count)
1622 {
1623 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1624 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1625 struct target *target = bank->target;
1626 struct reg_param reg_params[10];
1627 void *arm_algo;
1628 struct arm_algorithm armv4_5_algo;
1629 struct armv7m_algorithm armv7m_algo;
1630 struct working_area *write_algorithm;
1631 struct working_area *source;
1632 uint32_t buffer_size = 32768;
1633 uint32_t status;
1634 int retval = ERROR_OK;
1635
1636 /* input parameters -
1637 * R0 = source address
1638 * R1 = destination address
1639 * R2 = number of writes
1640 * R3 = flash write command
1641 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1642 * output parameters -
1643 * R5 = 0x80 ok 0x00 bad
1644 * temp registers -
1645 * R6 = value read from flash to test status
1646 * R7 = holding register
1647 * unlock registers -
1648 * R8 = unlock1_addr
1649 * R9 = unlock1_cmd
1650 * R10 = unlock2_addr
1651 * R11 = unlock2_cmd */
1652
1653 /* see contrib/loaders/flash/armv4_5_cfi_span_32.s for src */
1654 static const uint32_t armv4_5_word_32_code[] = {
1655 /* 00008100 <sp_32_code>: */
1656 0xe4905004, /* ldr r5, [r0], #4 */
1657 0xe5889000, /* str r9, [r8] */
1658 0xe58ab000, /* str r11, [r10] */
1659 0xe5883000, /* str r3, [r8] */
1660 0xe5815000, /* str r5, [r1] */
1661 0xe1a00000, /* nop */
1662 /* 00008110 <sp_32_busy>: */
1663 0xe5916000, /* ldr r6, [r1] */
1664 0xe0257006, /* eor r7, r5, r6 */
1665 0xe0147007, /* ands r7, r4, r7 */
1666 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1667 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1668 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1669 0xe5916000, /* ldr r6, [r1] */
1670 0xe0257006, /* eor r7, r5, r6 */
1671 0xe0147007, /* ands r7, r4, r7 */
1672 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1673 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1674 0x1a000004, /* bne 8154 <sp_32_done> */
1675 /* 00008140 <sp_32_cont>: */
1676 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1677 0x03a05080, /* moveq r5, #128 ; 0x80 */
1678 0x0a000001, /* beq 8154 <sp_32_done> */
1679 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1680 0xeaffffe8, /* b 8100 <sp_32_code> */
1681 /* 00008154 <sp_32_done>: */
1682 0xeafffffe /* b 8154 <sp_32_done> */
1683 };
1684
1685 /* see contrib/loaders/flash/armv4_5_cfi_span_16.s for src */
1686 static const uint32_t armv4_5_word_16_code[] = {
1687 /* 00008158 <sp_16_code>: */
1688 0xe0d050b2, /* ldrh r5, [r0], #2 */
1689 0xe1c890b0, /* strh r9, [r8] */
1690 0xe1cab0b0, /* strh r11, [r10] */
1691 0xe1c830b0, /* strh r3, [r8] */
1692 0xe1c150b0, /* strh r5, [r1] */
1693 0xe1a00000, /* nop (mov r0,r0) */
1694 /* 00008168 <sp_16_busy>: */
1695 0xe1d160b0, /* ldrh r6, [r1] */
1696 0xe0257006, /* eor r7, r5, r6 */
1697 0xe0147007, /* ands r7, r4, r7 */
1698 0x0a000007, /* beq 8198 <sp_16_cont> */
1699 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1700 0x0afffff9, /* beq 8168 <sp_16_busy> */
1701 0xe1d160b0, /* ldrh r6, [r1] */
1702 0xe0257006, /* eor r7, r5, r6 */
1703 0xe0147007, /* ands r7, r4, r7 */
1704 0x0a000001, /* beq 8198 <sp_16_cont> */
1705 0xe3a05000, /* mov r5, #0 ; 0x0 */
1706 0x1a000004, /* bne 81ac <sp_16_done> */
1707 /* 00008198 <sp_16_cont>: */
1708 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1709 0x03a05080, /* moveq r5, #128 ; 0x80 */
1710 0x0a000001, /* beq 81ac <sp_16_done> */
1711 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1712 0xeaffffe8, /* b 8158 <sp_16_code> */
1713 /* 000081ac <sp_16_done>: */
1714 0xeafffffe /* b 81ac <sp_16_done> */
1715 };
1716
1717 /* see contrib/loaders/flash/armv7m_cfi_span_16.s for src */
1718 static const uint32_t armv7m_word_16_code[] = {
1719 0x5B02F830,
1720 0x9000F8A8,
1721 0xB000F8AA,
1722 0x3000F8A8,
1723 0xBF00800D,
1724 0xEA85880E,
1725 0x40270706,
1726 0xEA16D00A,
1727 0xD0F70694,
1728 0xEA85880E,
1729 0x40270706,
1730 0xF04FD002,
1731 0xD1070500,
1732 0xD0023A01,
1733 0x0102F101,
1734 0xF04FE7E0,
1735 0xE7FF0580,
1736 0x0000BE00
1737 };
1738
1739 /* see contrib/loaders/flash/armv7m_cfi_span_16_dq7.s for src */
1740 static const uint32_t armv7m_word_16_code_dq7only[] = {
1741 /* 00000000 <code>: */
1742 0x5B02F830, /* ldrh.w r5, [r0], #2 */
1743 0x9000F8A8, /* strh.w r9, [r8] */
1744 0xB000F8AA, /* strh.w fp, [sl] */
1745 0x3000F8A8, /* strh.w r3, [r8] */
1746 0xBF00800D, /* strh r5, [r1, #0] */
1747 /* nop */
1748
1749 /* 00000014 <busy>: */
1750 0xEA85880E, /* ldrh r6, [r1, #0] */
1751 /* eor.w r7, r5, r6 */
1752 0x40270706, /* ands r7, r4 */
1753 0x3A01D1FA, /* bne.n 14 <busy> */
1754 /* subs r2, #1 */
1755 0xF101D002, /* beq.n 28 <success> */
1756 0xE7EB0102, /* add.w r1, r1, #2 */
1757 /* b.n 0 <code> */
1758
1759 /* 00000028 <success>: */
1760 0x0580F04F, /* mov.w r5, #128 */
1761 0xBF00E7FF, /* b.n 30 <done> */
1762 /* nop (for alignment purposes) */
1763
1764 /* 00000030 <done>: */
1765 0x0000BE00 /* bkpt 0x0000 */
1766 };
1767
1768 /* see contrib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1769 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1770 /* <sp_16_code>: */
1771 0xe0d050b2, /* ldrh r5, [r0], #2 */
1772 0xe1c890b0, /* strh r9, [r8] */
1773 0xe1cab0b0, /* strh r11, [r10] */
1774 0xe1c830b0, /* strh r3, [r8] */
1775 0xe1c150b0, /* strh r5, [r1] */
1776 0xe1a00000, /* nop (mov r0,r0) */
1777 /* <sp_16_busy>: */
1778 0xe1d160b0, /* ldrh r6, [r1] */
1779 0xe0257006, /* eor r7, r5, r6 */
1780 0xe2177080, /* ands r7, #0x80 */
1781 0x1afffffb, /* bne 8168 <sp_16_busy> */
1782 /* */
1783 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1784 0x03a05080, /* moveq r5, #128 ; 0x80 */
1785 0x0a000001, /* beq 81ac <sp_16_done> */
1786 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1787 0xeafffff0, /* b 8158 <sp_16_code> */
1788 /* 000081ac <sp_16_done>: */
1789 0xeafffffe /* b 81ac <sp_16_done> */
1790 };
1791
1792 /* see contrib/loaders/flash/armv4_5_cfi_span_8.s for src */
1793 static const uint32_t armv4_5_word_8_code[] = {
1794 /* 000081b0 <sp_16_code_end>: */
1795 0xe4d05001, /* ldrb r5, [r0], #1 */
1796 0xe5c89000, /* strb r9, [r8] */
1797 0xe5cab000, /* strb r11, [r10] */
1798 0xe5c83000, /* strb r3, [r8] */
1799 0xe5c15000, /* strb r5, [r1] */
1800 0xe1a00000, /* nop (mov r0,r0) */
1801 /* 000081c0 <sp_8_busy>: */
1802 0xe5d16000, /* ldrb r6, [r1] */
1803 0xe0257006, /* eor r7, r5, r6 */
1804 0xe0147007, /* ands r7, r4, r7 */
1805 0x0a000007, /* beq 81f0 <sp_8_cont> */
1806 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1807 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1808 0xe5d16000, /* ldrb r6, [r1] */
1809 0xe0257006, /* eor r7, r5, r6 */
1810 0xe0147007, /* ands r7, r4, r7 */
1811 0x0a000001, /* beq 81f0 <sp_8_cont> */
1812 0xe3a05000, /* mov r5, #0 ; 0x0 */
1813 0x1a000004, /* bne 8204 <sp_8_done> */
1814 /* 000081f0 <sp_8_cont>: */
1815 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1816 0x03a05080, /* moveq r5, #128 ; 0x80 */
1817 0x0a000001, /* beq 8204 <sp_8_done> */
1818 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1819 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1820 /* 00008204 <sp_8_done>: */
1821 0xeafffffe /* b 8204 <sp_8_done> */
1822 };
1823
1824 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1825 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1826
1827 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
1828 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1829 armv7m_algo.core_mode = ARM_MODE_THREAD;
1830 arm_algo = &armv7m_algo;
1831 } else if (is_arm(target_to_arm(target))) {
1832 /* All other ARM CPUs have 32 bit instructions */
1833 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1834 armv4_5_algo.core_mode = ARM_MODE_SVC;
1835 armv4_5_algo.core_state = ARM_STATE_ARM;
1836 arm_algo = &armv4_5_algo;
1837 } else {
1838 LOG_ERROR("Unknown architecture");
1839 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1840 }
1841
1842 int target_code_size = 0;
1843 const uint32_t *target_code_src = NULL;
1844
1845 switch (bank->bus_width) {
1846 case 1:
1847 if (is_armv7m(target_to_armv7m(target))) {
1848 LOG_ERROR("Unknown ARM architecture");
1849 return ERROR_FAIL;
1850 }
1851 target_code_src = armv4_5_word_8_code;
1852 target_code_size = sizeof(armv4_5_word_8_code);
1853 break;
1854 case 2:
1855 /* Check for DQ5 support */
1856 if (cfi_info->status_poll_mask & (1 << 5)) {
1857 if (is_armv7m(target_to_armv7m(target))) {
1858 /* armv7m target */
1859 target_code_src = armv7m_word_16_code;
1860 target_code_size = sizeof(armv7m_word_16_code);
1861 } else { /* armv4_5 target */
1862 target_code_src = armv4_5_word_16_code;
1863 target_code_size = sizeof(armv4_5_word_16_code);
1864 }
1865 } else {
1866 /* No DQ5 support. Use DQ7 DATA# polling only. */
1867 if (is_armv7m(target_to_armv7m(target))) {
1868 /* armv7m target */
1869 target_code_src = armv7m_word_16_code_dq7only;
1870 target_code_size = sizeof(armv7m_word_16_code_dq7only);
1871 } else { /* armv4_5 target */
1872 target_code_src = armv4_5_word_16_code_dq7only;
1873 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1874 }
1875 }
1876 break;
1877 case 4:
1878 if (is_armv7m(target_to_armv7m(target))) {
1879 LOG_ERROR("Unknown ARM architecture");
1880 return ERROR_FAIL;
1881 }
1882 target_code_src = armv4_5_word_32_code;
1883 target_code_size = sizeof(armv4_5_word_32_code);
1884 break;
1885 default:
1886 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1887 bank->bus_width);
1888 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1889 }
1890
1891 /* flash write code */
1892 uint8_t *target_code;
1893
1894 /* convert bus-width dependent algorithm code to correct endianness */
1895 target_code = malloc(target_code_size);
1896 if (target_code == NULL) {
1897 LOG_ERROR("Out of memory");
1898 return ERROR_FAIL;
1899 }
1900
1901 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1902
1903 /* allocate working area */
1904 retval = target_alloc_working_area(target, target_code_size,
1905 &write_algorithm);
1906 if (retval != ERROR_OK) {
1907 free(target_code);
1908 return retval;
1909 }
1910
1911 /* write algorithm code to working area */
1912 retval = target_write_buffer(target, write_algorithm->address,
1913 target_code_size, target_code);
1914 if (retval != ERROR_OK) {
1915 free(target_code);
1916 return retval;
1917 }
1918
1919 free(target_code);
1920
1921 /* the following code still assumes target code is fixed 24*4 bytes */
1922
1923 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1924 buffer_size /= 2;
1925 if (buffer_size <= 256) {
1926 /* we already allocated the writing code, but failed to get a
1927 * buffer, free the algorithm */
1928 target_free_working_area(target, write_algorithm);
1929
1930 LOG_WARNING(
1931 "not enough working area available, can't do block memory writes");
1932 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1933 }
1934 }
1935
1936 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1937 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1938 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1939 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1940 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1941 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1942 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1943 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1944 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1945 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1946
1947 while (count > 0) {
1948 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1949
1950 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1951 if (retval != ERROR_OK)
1952 break;
1953
1954 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1955 buf_set_u32(reg_params[1].value, 0, 32, address);
1956 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1957 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1958 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1959 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1960 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1961 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1962 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1963
1964 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1965 write_algorithm->address,
1966 write_algorithm->address + ((target_code_size) - 4),
1967 10000, arm_algo);
1968 if (retval != ERROR_OK)
1969 break;
1970
1971 status = buf_get_u32(reg_params[5].value, 0, 32);
1972 if (status != 0x80) {
1973 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1974 retval = ERROR_FLASH_OPERATION_FAILED;
1975 break;
1976 }
1977
1978 buffer += thisrun_count;
1979 address += thisrun_count;
1980 count -= thisrun_count;
1981 }
1982
1983 target_free_all_working_areas(target);
1984
1985 destroy_reg_param(&reg_params[0]);
1986 destroy_reg_param(&reg_params[1]);
1987 destroy_reg_param(&reg_params[2]);
1988 destroy_reg_param(&reg_params[3]);
1989 destroy_reg_param(&reg_params[4]);
1990 destroy_reg_param(&reg_params[5]);
1991 destroy_reg_param(&reg_params[6]);
1992 destroy_reg_param(&reg_params[7]);
1993 destroy_reg_param(&reg_params[8]);
1994 destroy_reg_param(&reg_params[9]);
1995
1996 return retval;
1997 }
1998
1999 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2000 {
2001 int retval;
2002 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2003
2004 cfi_intel_clear_status_register(bank);
2005 retval = cfi_send_command(bank, 0x40, address);
2006 if (retval != ERROR_OK)
2007 return retval;
2008
2009 retval = cfi_target_write_memory(bank, address, 1, word);
2010 if (retval != ERROR_OK)
2011 return retval;
2012
2013 uint8_t status;
2014 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
2015 if (retval != ERROR_OK)
2016 return retval;
2017 if (status != 0x80) {
2018 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2019 if (retval != ERROR_OK)
2020 return retval;
2021
2022 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2023 ", address 0x%" PRIx32,
2024 bank->base, address);
2025 return ERROR_FLASH_OPERATION_FAILED;
2026 }
2027
2028 return ERROR_OK;
2029 }
2030
2031 static int cfi_intel_write_words(struct flash_bank *bank, const uint8_t *word,
2032 uint32_t wordcount, uint32_t address)
2033 {
2034 int retval;
2035 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2036
2037 /* Calculate buffer size and boundary mask
2038 * buffersize is (buffer size per chip) * (number of chips)
2039 * bufferwsize is buffersize in words */
2040 uint32_t buffersize =
2041 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2042 uint32_t buffermask = buffersize-1;
2043 uint32_t bufferwsize = buffersize / bank->bus_width;
2044
2045 /* Check for valid range */
2046 if (address & buffermask) {
2047 LOG_ERROR("Write address at base " TARGET_ADDR_FMT ", address 0x%"
2048 PRIx32 " not aligned to 2^%d boundary",
2049 bank->base, address, cfi_info->max_buf_write_size);
2050 return ERROR_FLASH_OPERATION_FAILED;
2051 }
2052
2053 /* Check for valid size */
2054 if (wordcount > bufferwsize) {
2055 LOG_ERROR("Number of data words %" PRIu32 " exceeds available buffersize %" PRIu32,
2056 wordcount, buffersize);
2057 return ERROR_FLASH_OPERATION_FAILED;
2058 }
2059
2060 /* Write to flash buffer */
2061 cfi_intel_clear_status_register(bank);
2062
2063 /* Initiate buffer operation _*/
2064 retval = cfi_send_command(bank, 0xe8, address);
2065 if (retval != ERROR_OK)
2066 return retval;
2067 uint8_t status;
2068 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2069 if (retval != ERROR_OK)
2070 return retval;
2071 if (status != 0x80) {
2072 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2073 if (retval != ERROR_OK)
2074 return retval;
2075
2076 LOG_ERROR(
2077 "couldn't start buffer write operation at base " TARGET_ADDR_FMT
2078 ", address 0x%" PRIx32,
2079 bank->base,
2080 address);
2081 return ERROR_FLASH_OPERATION_FAILED;
2082 }
2083
2084 /* Write buffer wordcount-1 and data words */
2085 retval = cfi_send_command(bank, bufferwsize-1, address);
2086 if (retval != ERROR_OK)
2087 return retval;
2088
2089 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2090 if (retval != ERROR_OK)
2091 return retval;
2092
2093 /* Commit write operation */
2094 retval = cfi_send_command(bank, 0xd0, address);
2095 if (retval != ERROR_OK)
2096 return retval;
2097
2098 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2099 if (retval != ERROR_OK)
2100 return retval;
2101
2102 if (status != 0x80) {
2103 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2104 if (retval != ERROR_OK)
2105 return retval;
2106
2107 LOG_ERROR("Buffer write at base " TARGET_ADDR_FMT
2108 ", address 0x%" PRIx32 " failed.", bank->base, address);
2109 return ERROR_FLASH_OPERATION_FAILED;
2110 }
2111
2112 return ERROR_OK;
2113 }
2114
2115 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2116 {
2117 int retval;
2118 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2119 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2120
2121 retval = cfi_spansion_unlock_seq(bank);
2122 if (retval != ERROR_OK)
2123 return retval;
2124
2125 retval = cfi_send_command(bank, 0xa0, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2126 if (retval != ERROR_OK)
2127 return retval;
2128
2129 retval = cfi_target_write_memory(bank, address, 1, word);
2130 if (retval != ERROR_OK)
2131 return retval;
2132
2133 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2134 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2135 if (retval != ERROR_OK)
2136 return retval;
2137
2138 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2139 ", address 0x%" PRIx32, bank->base, address);
2140 return ERROR_FLASH_OPERATION_FAILED;
2141 }
2142
2143 return ERROR_OK;
2144 }
2145
2146 static int cfi_spansion_write_words(struct flash_bank *bank, const uint8_t *word,
2147 uint32_t wordcount, uint32_t address)
2148 {
2149 int retval;
2150 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2151
2152 /* Calculate buffer size and boundary mask
2153 * buffersize is (buffer size per chip) * (number of chips)
2154 * bufferwsize is buffersize in words */
2155 uint32_t buffersize =
2156 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2157 uint32_t buffermask = buffersize-1;
2158 uint32_t bufferwsize = buffersize / bank->bus_width;
2159
2160 /* Check for valid range */
2161 if (address & buffermask) {
2162 LOG_ERROR("Write address at base " TARGET_ADDR_FMT
2163 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2164 bank->base, address, cfi_info->max_buf_write_size);
2165 return ERROR_FLASH_OPERATION_FAILED;
2166 }
2167
2168 /* Check for valid size */
2169 if (wordcount > bufferwsize) {
2170 LOG_ERROR("Number of data words %" PRIu32 " exceeds available buffersize %"
2171 PRIu32, wordcount, buffersize);
2172 return ERROR_FLASH_OPERATION_FAILED;
2173 }
2174
2175 /* Unlock */
2176 retval = cfi_spansion_unlock_seq(bank);
2177 if (retval != ERROR_OK)
2178 return retval;
2179
2180 /* Buffer load command */
2181 retval = cfi_send_command(bank, 0x25, address);
2182 if (retval != ERROR_OK)
2183 return retval;
2184
2185 /* Write buffer wordcount-1 and data words */
2186 retval = cfi_send_command(bank, bufferwsize-1, address);
2187 if (retval != ERROR_OK)
2188 return retval;
2189
2190 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2191 if (retval != ERROR_OK)
2192 return retval;
2193
2194 /* Commit write operation */
2195 retval = cfi_send_command(bank, 0x29, address);
2196 if (retval != ERROR_OK)
2197 return retval;
2198
2199 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2200 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2201 if (retval != ERROR_OK)
2202 return retval;
2203
2204 LOG_ERROR("couldn't write block at base " TARGET_ADDR_FMT
2205 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2206 bufferwsize);
2207 return ERROR_FLASH_OPERATION_FAILED;
2208 }
2209
2210 return ERROR_OK;
2211 }
2212
2213 int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2214 {
2215 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2216
2217 switch (cfi_info->pri_id) {
2218 case 1:
2219 case 3:
2220 return cfi_intel_write_word(bank, word, address);
2221 case 2:
2222 return cfi_spansion_write_word(bank, word, address);
2223 default:
2224 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2225 break;
2226 }
2227
2228 return ERROR_FLASH_OPERATION_FAILED;
2229 }
2230
2231 static int cfi_write_words(struct flash_bank *bank, const uint8_t *word,
2232 uint32_t wordcount, uint32_t address)
2233 {
2234 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2235
2236 if (cfi_info->buf_write_timeout_typ == 0) {
2237 /* buffer writes are not supported */
2238 LOG_DEBUG("Buffer Writes Not Supported");
2239 return ERROR_FLASH_OPER_UNSUPPORTED;
2240 }
2241
2242 switch (cfi_info->pri_id) {
2243 case 1:
2244 case 3:
2245 return cfi_intel_write_words(bank, word, wordcount, address);
2246 case 2:
2247 return cfi_spansion_write_words(bank, word, wordcount, address);
2248 default:
2249 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2250 break;
2251 }
2252
2253 return ERROR_FLASH_OPERATION_FAILED;
2254 }
2255
2256 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2257 {
2258 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2259 uint32_t address = bank->base + offset;
2260 uint32_t read_p;
2261 int align; /* number of unaligned bytes */
2262 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2263 int retval;
2264
2265 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2266 (int)count, (unsigned)offset);
2267
2268 if (bank->target->state != TARGET_HALTED) {
2269 LOG_ERROR("Target not halted");
2270 return ERROR_TARGET_NOT_HALTED;
2271 }
2272
2273 if (offset + count > bank->size)
2274 return ERROR_FLASH_DST_OUT_OF_BANK;
2275
2276 if (cfi_info->qry[0] != 'Q')
2277 return ERROR_FLASH_BANK_NOT_PROBED;
2278
2279 /* start at the first byte of the first word (bus_width size) */
2280 read_p = address & ~(bank->bus_width - 1);
2281 align = address - read_p;
2282 if (align != 0) {
2283 LOG_INFO("Fixup %d unaligned read head bytes", align);
2284
2285 /* read a complete word from flash */
2286 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2287 if (retval != ERROR_OK)
2288 return retval;
2289
2290 /* take only bytes we need */
2291 for (unsigned int i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2292 *buffer++ = current_word[i];
2293
2294 read_p += bank->bus_width;
2295 }
2296
2297 align = count / bank->bus_width;
2298 if (align) {
2299 retval = cfi_target_read_memory(bank, read_p, align, buffer);
2300 if (retval != ERROR_OK)
2301 return retval;
2302
2303 read_p += align * bank->bus_width;
2304 buffer += align * bank->bus_width;
2305 count -= align * bank->bus_width;
2306 }
2307
2308 if (count) {
2309 LOG_INFO("Fixup %" PRIu32 " unaligned read tail bytes", count);
2310
2311 /* read a complete word from flash */
2312 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2313 if (retval != ERROR_OK)
2314 return retval;
2315
2316 /* take only bytes we need */
2317 for (unsigned int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2318 *buffer++ = current_word[i];
2319 }
2320
2321 return ERROR_OK;
2322 }
2323
2324 static int cfi_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
2325 {
2326 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2327 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2328 uint32_t write_p;
2329 int align; /* number of unaligned bytes */
2330 int blk_count; /* number of bus_width bytes for block copy */
2331 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2332 *programmed */
2333 uint8_t *swapped_buffer = NULL;
2334 const uint8_t *real_buffer = NULL;
2335 int retval;
2336
2337 if (bank->target->state != TARGET_HALTED) {
2338 LOG_ERROR("Target not halted");
2339 return ERROR_TARGET_NOT_HALTED;
2340 }
2341
2342 if (offset + count > bank->size)
2343 return ERROR_FLASH_DST_OUT_OF_BANK;
2344
2345 if (cfi_info->qry[0] != 'Q')
2346 return ERROR_FLASH_BANK_NOT_PROBED;
2347
2348 /* start at the first byte of the first word (bus_width size) */
2349 write_p = address & ~(bank->bus_width - 1);
2350 align = address - write_p;
2351 if (align != 0) {
2352 LOG_INFO("Fixup %d unaligned head bytes", align);
2353
2354 /* read a complete word from flash */
2355 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2356 if (retval != ERROR_OK)
2357 return retval;
2358
2359 /* replace only bytes that must be written */
2360 for (unsigned int i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2361 if (cfi_info->data_swap)
2362 /* data bytes are swapped (reverse endianness) */
2363 current_word[bank->bus_width - i] = *buffer++;
2364 else
2365 current_word[i] = *buffer++;
2366
2367 retval = cfi_write_word(bank, current_word, write_p);
2368 if (retval != ERROR_OK)
2369 return retval;
2370 write_p += bank->bus_width;
2371 }
2372
2373 if (cfi_info->data_swap && count) {
2374 swapped_buffer = malloc(count & ~(bank->bus_width - 1));
2375 switch (bank->bus_width) {
2376 case 2:
2377 buf_bswap16(swapped_buffer, buffer,
2378 count & ~(bank->bus_width - 1));
2379 break;
2380 case 4:
2381 buf_bswap32(swapped_buffer, buffer,
2382 count & ~(bank->bus_width - 1));
2383 break;
2384 }
2385 real_buffer = buffer;
2386 buffer = swapped_buffer;
2387 }
2388
2389 /* handle blocks of bus_size aligned bytes */
2390 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2391 switch (cfi_info->pri_id) {
2392 /* try block writes (fails without working area) */
2393 case 1:
2394 case 3:
2395 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2396 break;
2397 case 2:
2398 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2399 break;
2400 default:
2401 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2402 retval = ERROR_FLASH_OPERATION_FAILED;
2403 break;
2404 }
2405 if (retval == ERROR_OK) {
2406 /* Increment pointers and decrease count on successful block write */
2407 buffer += blk_count;
2408 write_p += blk_count;
2409 count -= blk_count;
2410 } else {
2411 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2412 /* Calculate buffer size and boundary mask
2413 * buffersize is (buffer size per chip) * (number of chips)
2414 * bufferwsize is buffersize in words */
2415 uint32_t buffersize =
2416 (1UL <<
2417 cfi_info->max_buf_write_size) *
2418 (bank->bus_width / bank->chip_width);
2419 uint32_t buffermask = buffersize-1;
2420 uint32_t bufferwsize = buffersize / bank->bus_width;
2421
2422 /* fall back to memory writes */
2423 while (count >= (uint32_t)bank->bus_width) {
2424 bool fallback;
2425 if ((write_p & 0xff) == 0) {
2426 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2427 PRIx32 " bytes remaining", write_p, count);
2428 }
2429 fallback = true;
2430 if ((bufferwsize > 0) && (count >= buffersize) &&
2431 !(write_p & buffermask)) {
2432 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2433 if (retval == ERROR_OK) {
2434 buffer += buffersize;
2435 write_p += buffersize;
2436 count -= buffersize;
2437 fallback = false;
2438 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2439 return retval;
2440 }
2441 /* try the slow way? */
2442 if (fallback) {
2443 for (unsigned int i = 0; i < bank->bus_width; i++)
2444 current_word[i] = *buffer++;
2445
2446 retval = cfi_write_word(bank, current_word, write_p);
2447 if (retval != ERROR_OK)
2448 return retval;
2449
2450 write_p += bank->bus_width;
2451 count -= bank->bus_width;
2452 }
2453 }
2454 } else
2455 return retval;
2456 }
2457
2458 if (swapped_buffer) {
2459 buffer = real_buffer + (buffer - swapped_buffer);
2460 free(swapped_buffer);
2461 }
2462
2463 /* return to read array mode, so we can read from flash again for padding */
2464 retval = cfi_reset(bank);
2465 if (retval != ERROR_OK)
2466 return retval;
2467
2468 /* handle unaligned tail bytes */
2469 if (count > 0) {
2470 LOG_INFO("Fixup %" PRIu32 " unaligned tail bytes", count);
2471
2472 /* read a complete word from flash */
2473 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2474 if (retval != ERROR_OK)
2475 return retval;
2476
2477 /* replace only bytes that must be written */
2478 for (unsigned int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2479 if (cfi_info->data_swap)
2480 /* data bytes are swapped (reverse endianness) */
2481 current_word[bank->bus_width - i] = *buffer++;
2482 else
2483 current_word[i] = *buffer++;
2484
2485 retval = cfi_write_word(bank, current_word, write_p);
2486 if (retval != ERROR_OK)
2487 return retval;
2488 }
2489
2490 /* return to read array mode */
2491 return cfi_reset(bank);
2492 }
2493
2494 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param)
2495 {
2496 (void) param;
2497 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2498 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2499
2500 pri_ext->_reversed_geometry = 1;
2501 }
2502
2503 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param)
2504 {
2505 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2506 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2507 (void) param;
2508
2509 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) {
2510 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2511
2512 for (unsigned int i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2513 int j = (cfi_info->num_erase_regions - 1) - i;
2514 uint32_t swap;
2515
2516 swap = cfi_info->erase_region_info[i];
2517 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2518 cfi_info->erase_region_info[j] = swap;
2519 }
2520 }
2521 }
2522
2523 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param)
2524 {
2525 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2526 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2527 const struct cfi_unlock_addresses *unlock_addresses = param;
2528
2529 pri_ext->_unlock1 = unlock_addresses->unlock1;
2530 pri_ext->_unlock2 = unlock_addresses->unlock2;
2531 }
2532
2533 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param)
2534 {
2535 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2536 const int *status_poll_mask = param;
2537
2538 cfi_info->status_poll_mask = *status_poll_mask;
2539 }
2540
2541
2542 static int cfi_query_string(struct flash_bank *bank, int address)
2543 {
2544 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2545 int retval;
2546
2547 retval = cfi_send_command(bank, 0x98, cfi_flash_address(bank, 0, address));
2548 if (retval != ERROR_OK)
2549 return retval;
2550
2551 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2552 if (retval != ERROR_OK)
2553 return retval;
2554 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2555 if (retval != ERROR_OK)
2556 return retval;
2557 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2558 if (retval != ERROR_OK)
2559 return retval;
2560
2561 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2562 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2563
2564 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2565 retval = cfi_reset(bank);
2566 if (retval != ERROR_OK)
2567 return retval;
2568 LOG_ERROR("Could not probe bank: no QRY");
2569 return ERROR_FLASH_BANK_INVALID;
2570 }
2571
2572 return ERROR_OK;
2573 }
2574
2575 int cfi_probe(struct flash_bank *bank)
2576 {
2577 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2578 struct target *target = bank->target;
2579 unsigned int num_sectors = 0;
2580 int sector = 0;
2581 uint32_t unlock1 = 0x555;
2582 uint32_t unlock2 = 0x2aa;
2583 int retval;
2584 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2585
2586 if (bank->target->state != TARGET_HALTED) {
2587 LOG_ERROR("Target not halted");
2588 return ERROR_TARGET_NOT_HALTED;
2589 }
2590
2591 cfi_info->probed = false;
2592 cfi_info->num_erase_regions = 0;
2593
2594 free(bank->sectors);
2595 bank->sectors = NULL;
2596
2597 free(cfi_info->erase_region_info);
2598 cfi_info->erase_region_info = NULL;
2599
2600 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2601 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2602 */
2603 if (cfi_info->jedec_probe) {
2604 unlock1 = 0x5555;
2605 unlock2 = 0x2aaa;
2606 }
2607
2608 /* switch to read identifier codes mode ("AUTOSELECT") */
2609 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, unlock1));
2610 if (retval != ERROR_OK)
2611 return retval;
2612 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, unlock2));
2613 if (retval != ERROR_OK)
2614 return retval;
2615 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, unlock1));
2616 if (retval != ERROR_OK)
2617 return retval;
2618
2619 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x00),
2620 1, value_buf0);
2621 if (retval != ERROR_OK)
2622 return retval;
2623 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x01),
2624 1, value_buf1);
2625 if (retval != ERROR_OK)
2626 return retval;
2627 switch (bank->chip_width) {
2628 case 1:
2629 cfi_info->manufacturer = *value_buf0;
2630 cfi_info->device_id = *value_buf1;
2631 break;
2632 case 2:
2633 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2634 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2635 break;
2636 case 4:
2637 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2638 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2639 break;
2640 default:
2641 LOG_ERROR("Unsupported bank chipwidth %u, can't probe memory",
2642 bank->chip_width);
2643 return ERROR_FLASH_OPERATION_FAILED;
2644 }
2645
2646 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2647 cfi_info->manufacturer, cfi_info->device_id);
2648 /* switch back to read array mode */
2649 retval = cfi_reset(bank);
2650 if (retval != ERROR_OK)
2651 return retval;
2652
2653 /* check device/manufacturer ID for known non-CFI flashes. */
2654 cfi_fixup_non_cfi(bank);
2655
2656 /* query only if this is a CFI compatible flash,
2657 * otherwise the relevant info has already been filled in
2658 */
2659 if (!cfi_info->not_cfi) {
2660 /* enter CFI query mode
2661 * according to JEDEC Standard No. 68.01,
2662 * a single bus sequence with address = 0x55, data = 0x98 should put
2663 * the device into CFI query mode.
2664 *
2665 * SST flashes clearly violate this, and we will consider them incompatible for now
2666 */
2667
2668 retval = cfi_query_string(bank, 0x55);
2669 if (retval != ERROR_OK) {
2670 /*
2671 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2672 * be harmless enough:
2673 *
2674 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2675 */
2676 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2677 retval = cfi_query_string(bank, 0x555);
2678 }
2679 if (retval != ERROR_OK)
2680 return retval;
2681
2682 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2683 if (retval != ERROR_OK)
2684 return retval;
2685 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2686 if (retval != ERROR_OK)
2687 return retval;
2688 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2689 if (retval != ERROR_OK)
2690 return retval;
2691 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2692 if (retval != ERROR_OK)
2693 return retval;
2694
2695 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2696 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2697 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2698 cfi_info->alt_id, cfi_info->alt_addr);
2699
2700 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2701 if (retval != ERROR_OK)
2702 return retval;
2703 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2704 if (retval != ERROR_OK)
2705 return retval;
2706 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2707 if (retval != ERROR_OK)
2708 return retval;
2709 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2710 if (retval != ERROR_OK)
2711 return retval;
2712
2713 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2714 if (retval != ERROR_OK)
2715 return retval;
2716 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2717 if (retval != ERROR_OK)
2718 return retval;
2719 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2720 if (retval != ERROR_OK)
2721 return retval;
2722 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2723 if (retval != ERROR_OK)
2724 return retval;
2725 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2726 if (retval != ERROR_OK)
2727 return retval;
2728 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2729 if (retval != ERROR_OK)
2730 return retval;
2731 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2732 if (retval != ERROR_OK)
2733 return retval;
2734 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2735 if (retval != ERROR_OK)
2736 return retval;
2737
2738 uint8_t data;
2739 retval = cfi_query_u8(bank, 0, 0x27, &data);
2740 if (retval != ERROR_OK)
2741 return retval;
2742 cfi_info->dev_size = 1 << data;
2743
2744 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2745 if (retval != ERROR_OK)
2746 return retval;
2747 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2748 if (retval != ERROR_OK)
2749 return retval;
2750 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2751 if (retval != ERROR_OK)
2752 return retval;
2753
2754 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2755 cfi_info->dev_size, cfi_info->interface_desc,
2756 (1 << cfi_info->max_buf_write_size));
2757
2758 if (cfi_info->num_erase_regions) {
2759 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2760 * cfi_info->num_erase_regions);
2761 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2762 retval = cfi_query_u32(bank,
2763 0,
2764 0x2d + (4 * i),
2765 &cfi_info->erase_region_info[i]);
2766 if (retval != ERROR_OK)
2767 return retval;
2768 LOG_DEBUG(
2769 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2770 i,
2771 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2772 (cfi_info->erase_region_info[i] >> 16) * 256);
2773 }
2774 } else
2775 cfi_info->erase_region_info = NULL;
2776
2777 /* We need to read the primary algorithm extended query table before calculating
2778 * the sector layout to be able to apply fixups
2779 */
2780 switch (cfi_info->pri_id) {
2781 /* Intel command set (standard and extended) */
2782 case 0x0001:
2783 case 0x0003:
2784 cfi_read_intel_pri_ext(bank);
2785 break;
2786 /* AMD/Spansion, Atmel, ... command set */
2787 case 0x0002:
2788 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2789 *default
2790 *for
2791 *all
2792 *CFI
2793 *flashes
2794 **/
2795 cfi_read_0002_pri_ext(bank);
2796 break;
2797 default:
2798 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2799 break;
2800 }
2801
2802 /* return to read array mode
2803 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2804 */
2805 retval = cfi_reset(bank);
2806 if (retval != ERROR_OK)
2807 return retval;
2808 } /* end CFI case */
2809
2810 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2811 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2812 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2813 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2814 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2815
2816 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2817 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2818 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2819 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2820
2821 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2822 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2823 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2824 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2825 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2826 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2827
2828 /* convert timeouts to real values in ms */
2829 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2830 (1L << cfi_info->word_write_timeout_max), 1000);
2831 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2832 (1L << cfi_info->buf_write_timeout_max), 1000);
2833 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2834 (1L << cfi_info->block_erase_timeout_max);
2835 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2836 (1L << cfi_info->chip_erase_timeout_max);
2837
2838 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2839 "block erase timeout: %u ms, chip erase timeout: %u ms",
2840 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2841 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2842
2843 /* apply fixups depending on the primary command set */
2844 switch (cfi_info->pri_id) {
2845 /* Intel command set (standard and extended) */
2846 case 0x0001:
2847 case 0x0003:
2848 cfi_fixup(bank, cfi_0001_fixups);
2849 break;
2850 /* AMD/Spansion, Atmel, ... command set */
2851 case 0x0002:
2852 cfi_fixup(bank, cfi_0002_fixups);
2853 break;
2854 default:
2855 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2856 break;
2857 }
2858
2859 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2860 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2861 " size flash was found", bank->size, cfi_info->dev_size);
2862 }
2863
2864 if (cfi_info->num_erase_regions == 0) {
2865 /* a device might have only one erase block, spanning the whole device */
2866 bank->num_sectors = 1;
2867 bank->sectors = malloc(sizeof(struct flash_sector));
2868
2869 bank->sectors[sector].offset = 0x0;
2870 bank->sectors[sector].size = bank->size;
2871 bank->sectors[sector].is_erased = -1;
2872 bank->sectors[sector].is_protected = -1;
2873 } else {
2874 uint32_t offset = 0;
2875
2876 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++)
2877 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2878
2879 bank->num_sectors = num_sectors;
2880 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2881
2882 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2883 for (uint32_t j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2884 bank->sectors[sector].offset = offset;
2885 bank->sectors[sector].size =
2886 ((cfi_info->erase_region_info[i] >> 16) * 256)
2887 * bank->bus_width / bank->chip_width;
2888 offset += bank->sectors[sector].size;
2889 bank->sectors[sector].is_erased = -1;
2890 bank->sectors[sector].is_protected = -1;
2891 sector++;
2892 }
2893 }
2894 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2895 LOG_WARNING(
2896 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "",
2897 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2898 offset);
2899 }
2900 }
2901
2902 cfi_info->probed = true;
2903
2904 return ERROR_OK;
2905 }
2906
2907 int cfi_auto_probe(struct flash_bank *bank)
2908 {
2909 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2910 if (cfi_info->probed)
2911 return ERROR_OK;
2912 return cfi_probe(bank);
2913 }
2914
2915 static int cfi_intel_protect_check(struct flash_bank *bank)
2916 {
2917 int retval;
2918 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2919 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2920
2921 /* check if block lock bits are supported on this device */
2922 if (!(pri_ext->blk_status_reg_mask & 0x1))
2923 return ERROR_FLASH_OPERATION_FAILED;
2924
2925 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
2926 if (retval != ERROR_OK)
2927 return retval;
2928
2929 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2930 uint8_t block_status;
2931 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2932 if (retval != ERROR_OK)
2933 return retval;
2934
2935 if (block_status & 1)
2936 bank->sectors[i].is_protected = 1;
2937 else
2938 bank->sectors[i].is_protected = 0;
2939 }
2940
2941 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2942 }
2943
2944 static int cfi_spansion_protect_check(struct flash_bank *bank)
2945 {
2946 int retval;
2947 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2948 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2949
2950 retval = cfi_spansion_unlock_seq(bank);
2951 if (retval != ERROR_OK)
2952 return retval;
2953
2954 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2955 if (retval != ERROR_OK)
2956 return retval;
2957
2958 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2959 uint8_t block_status;
2960 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2961 if (retval != ERROR_OK)
2962 return retval;
2963
2964 if (block_status & 1)
2965 bank->sectors[i].is_protected = 1;
2966 else
2967 bank->sectors[i].is_protected = 0;
2968 }
2969
2970 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2971 }
2972
2973 int cfi_protect_check(struct flash_bank *bank)
2974 {
2975 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2976
2977 if (bank->target->state != TARGET_HALTED) {
2978 LOG_ERROR("Target not halted");
2979 return ERROR_TARGET_NOT_HALTED;
2980 }
2981
2982 if (cfi_info->qry[0] != 'Q')
2983 return ERROR_FLASH_BANK_NOT_PROBED;
2984
2985 switch (cfi_info->pri_id) {
2986 case 1:
2987 case 3:
2988 return cfi_intel_protect_check(bank);
2989 case 2:
2990 return cfi_spansion_protect_check(bank);
2991 default:
2992 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2993 break;
2994 }
2995
2996 return ERROR_OK;
2997 }
2998
2999 int cfi_get_info(struct flash_bank *bank, char *buf, int buf_size)
3000 {
3001 int printed;
3002 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3003
3004 if (cfi_info->qry[0] == 0xff) {
3005 snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
3006 return ERROR_OK;
3007 }
3008
3009 if (!cfi_info->not_cfi)
3010 printed = snprintf(buf, buf_size, "\nCFI flash: ");
3011 else
3012 printed = snprintf(buf, buf_size, "\nnon-CFI flash: ");
3013 buf += printed;
3014 buf_size -= printed;
3015
3016 printed = snprintf(buf, buf_size, "mfr: 0x%4.4x, id:0x%4.4x\n\n",
3017 cfi_info->manufacturer, cfi_info->device_id);
3018 buf += printed;
3019 buf_size -= printed;
3020
3021 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
3022 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
3023 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
3024 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
3025 buf += printed;
3026 buf_size -= printed;
3027
3028 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, "
3029 "Vpp min: %u.%x, Vpp max: %u.%x\n",
3030 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
3031 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
3032 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
3033 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
3034 buf += printed;
3035 buf_size -= printed;
3036
3037 printed = snprintf(buf, buf_size, "typ. word write timeout: %u us, "
3038 "typ. buf write timeout: %u us, "
3039 "typ. block erase timeout: %u ms, "
3040 "typ. chip erase timeout: %u ms\n",
3041 1 << cfi_info->word_write_timeout_typ,
3042 1 << cfi_info->buf_write_timeout_typ,
3043 1 << cfi_info->block_erase_timeout_typ,
3044 1 << cfi_info->chip_erase_timeout_typ);
3045 buf += printed;
3046 buf_size -= printed;
3047
3048 printed = snprintf(buf,
3049 buf_size,
3050 "max. word write timeout: %u us, "
3051 "max. buf write timeout: %u us, max. "
3052 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
3053 (1 <<
3054 cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
3055 (1 <<
3056 cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
3057 (1 <<
3058 cfi_info->block_erase_timeout_max) *
3059 (1 << cfi_info->block_erase_timeout_typ),
3060 (1 <<
3061 cfi_info->chip_erase_timeout_max) *
3062 (1 << cfi_info->chip_erase_timeout_typ));
3063 buf += printed;
3064 buf_size -= printed;
3065
3066 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, "
3067 "max buffer write size: 0x%x\n",
3068 cfi_info->dev_size,
3069 cfi_info->interface_desc,
3070 1 << cfi_info->max_buf_write_size);
3071 buf += printed;
3072 buf_size -= printed;
3073
3074 switch (cfi_info->pri_id) {
3075 case 1:
3076 case 3:
3077 cfi_intel_info(bank, buf, buf_size);
3078 break;
3079 case 2:
3080 cfi_spansion_info(bank, buf, buf_size);
3081 break;
3082 default:
3083 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3084 break;
3085 }
3086
3087 return ERROR_OK;
3088 }
3089
3090 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param)
3091 {
3092 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3093
3094 /* disable write buffer for M29W128G */
3095 cfi_info->buf_write_timeout_typ = 0;
3096 }
3097
3098 const struct flash_driver cfi_flash = {
3099 .name = "cfi",
3100 .flash_bank_command = cfi_flash_bank_command,
3101 .erase = cfi_erase,
3102 .protect = cfi_protect,
3103 .write = cfi_write,
3104 .read = cfi_read,
3105 .probe = cfi_probe,
3106 .auto_probe = cfi_auto_probe,
3107 /* FIXME: access flash at bus_width size */
3108 .erase_check = default_flash_blank_check,
3109 .protect_check = cfi_protect_check,
3110 .info = cfi_get_info,
3111 .free_driver_priv = default_flash_free_driver_priv,
3112 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)